PX 88 Book

(74

3

[N NEEN N NN NN NEEN N NE A N N N N N I
TR IR TEEEREN T I B
[N AN N N N N N BEECE N BICEE N N N N N I

intal

IAPX 88 BOOK

JULY 1981

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR 7-104.9 (a) (9). Intel Corporation
assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit
patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of
Intel Corporation.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

BXP Intelevision MULTIBUS

CREDIT Intellec MULTIMODULE

i iSBC Plug-A-Bubble

ICE iSBX PROMPT

ICS Library Manager Promware

im MCS RMX

Insite Megachassis UPI

Intel Micromainframe uScope
Micromap System 2000

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation

Literature Department SV3-3
3065 Bowers Avenue

Santa Clara, CA 95051

© INTEL CORPORATION, 1981 AFN-01300C-1

ABOUT THIS BOOK

This book describes the unique Intel 8088
microprocessor, the outstanding choice for 8-
bit microcomputer applications requiring
both high performance and low cost.

The Intel 8088 is the most powerful 8-bit
microprocessor available today, yet as easy to
use as other 8-bit microprocessors designers
have used for years.

Chapter 1 introduces the 8088 CPU with its
key features that give it high performance,
with overviews on the following topics:

Pipelined architecture
Register resources
Memory addressing
Instruction set
System interfacing
Functional extensions

Chapter 2 provides a detailed discussion of
the programmer’s architecture including:

Register set
Addressing modes
Instruction set
Assembly language

At the end of Chapter 2 is a complete set of
instruction set reference pages that describe
each instruction fully, one at a time.

Chapter 3 provides necessary information for
the hardware designer to incorporate the
8088 microprocessor into cost effective
iAPX* 88 microcomputer systems. Included
is a discussion of the following:

® Bus Timing and Status

® Bus Interface including interface to MUX
bus devices
Memory and Peripheral Interface

® Wait States

*IAPX stands for Intel Advanced Processor System

Interrupts

Direct Memory Access
Reset

Building Large Systems

Chapter 4 gives some specific 8088 system
design examples for the simple to complex
systems:

Multiplexed bus small systems
¢ Demultiplexed systems with standard mem-
ories and peripherals
S100 Bus System
iAPX 88 based CRT
MULTIBUS™ System

The Supplement provides an introduction to
microcomputer concepts and terminology
including:

® What is a microcomputer?

® What’s inside the CPU?
® What are machine cycles?
® What are addressing modes?

The Appendix contains the following data
sheets and comparison benchmark reports:

Data Sheets

iAPX 88/10 data sheet
® 8284A data sheet
8282/8283 data sheet

e 8286/8287 data sheet

Benchmark Reports
* jAPX 88 vs. 6809
® iAPX 88 vs. Z80

Related Documentation:

® TheiAPX 86,88 User’s Manual
Contains complete design information on
building iAPX 86 and iAPX 88 systems,
including the use of 8089 I/O processor
and 8087 numerics processor extension.
Several Application Notes are included.

® The Peripheral Design Handbook
Contains data sheets and application
notes featuring Intel peripheral devices.

® The Intel Component Data Catalog
Contains data sheets for all Intel semi-
conductor components, including mem-
ories and peripherals.

These books, and other documentation are
available from:

Literature Department
Intel Corporation
3065 Bowers Ave.
Santa Clara, CA 95051

The material in the Assembly Language sec-
tion of Chapter 2 was edited and reprinted
with permission of Hayden Book Company,
from The 8086 Primer, by Stephen P. Morse.
Copyright 1980.

Furtherrhbre, selected material was extracted
from the following articles:

1) S.P. Morse, W.B. Pohlman, B.W. Ravenel,
“The Intel 8086 Microprocessor: A 16-Bit
Evolution of the 8080,” Computer, June
1978. '

2) S.P. Morse, B.W. Ravenel, S. Mazor,
W.B. Pohlman, “Intel Microprocessors —
8008 to 8086,” Computer, October 1980.

Table of Contents

CHAPTER 1 Page
Introduction To iAPX 88 :
What is the 80887ottt ettt 1-1
8088 Pipelined ArchiteCtureuuiuuiinit ittt iia e 1-2
Efficient Program Codingointtit it e 1-3
iAPX 88 Megabyte Memory Addressing «......vueuueet e tnnniiiiieeennnnn 1-5
The 8088's 16-Bit Instruction Set N S 1-10
Interfacing the 8088t 1-13
Processor EXtensioNSt e 1-17
. Reviewl e e e et et R ... 1-19
CHAPTER 2 :
iAPX 88 Architecture and Instructions
IAPX 88 ArChiteCturevuuitii it i 2-1
Register StruCtUIret e e e e e 2-2
Addressing Modes ...t 2-5
Organization of Instruction Set R A R S G N S L 2-10
Assembly Language Programmingovvuiieiiviiniennein i, 2-18
Instruction Set i I o AN 2-45
CHAPTER 3
iAPX 88 Hardware Design ,
CPU Pin FUNCHIONS . ..ottt ittt e id il ein s A Ve e e 3-1
8088 Bus Timing and Minimum Mode Status RPN R 3-6
BUs Interface ...t e e 3-8
Memory and Peripheral Interface oo i iiia e e 3-9
Clock Generationcviiiiiiininiiininieeennan R ST AR S 3-13
=TT T TS TUS PN VO S TPPN: S PEPN 3-14
Ready Implementation and Timingeiniiiiiioiiiniiiiineaainnn. 3-16
LN =T T o} £ PP 3-18
Bus Control Transfer ... e 3-24
Maximum Mode Systemst i 3-24
CHAPTER 4
Application Examples : ;
Multiplexed System i e e e 4-1
iAPX 88 Demultiplexed System iiiiinii i S 4-8
iAPX 88-Based S100 Bus Systemcccvvnn. ot eesy e o sreraie s, i 460 Ee e 4-12
iAPX 88-Based CRT Controllerc.coviviiiiiiiinann. E A AP SAIN 4-12
IAPX 88 Multiprocessing Systemsovititiir ittt et 4-14
SUPPLEMENT
What is @ Microcomputer?ttt it it S-1
What are Data, Address and Control Busses?o, S-2
Machine Cycles, Interrupts, and Direct Memory ACCeSS "..........ccvvveevnnnnnn. S-3
What's Inside the CPU it e e e e ieeeenes S-4
APPENDIX
Benchmark Reports and Data Sheets
Benchmark Report: Intel® iAPX 88 vs. Zilog Z80ovviiiiiiiieeiiineennnnn.. 1
Benchmark Report: Intel® iAPX 88 vs. Motorola MC6809............cccvviveennnn. 20
iAPX 88/10 16-Bit HMOS MiCrOprOCESSOrutiettttnrnnnnrriinnninnnnnnnn. 37
8284A Clock Generator and Driver for iAPX 88/10, iAPX 88/10 Processors 63
8282/8283 Octal LatCho i e 71
8286/8287 Octal BUS TranSCEIVETvvttttttttiieee ettt eeeeeeeeenennnennnn 76

List of Figures

CHAPTER 1 Page
1-1 Microcomputer Block Diagramcoiiiiiiiiiiiiiiiiiiiiiiiiiii i 1-1
1-2 8088 CPU .o e 1-1
1-3 'Program Execution in Standard Microprocessorccooeiiiiii.... 1-2
1-4 Pipelined Internal Architecturec i 1-2
1-5 Parallel Operationin 8088 CPUottt 1-3
1-6 8088 Register Setoiiiiiiiiiiiii i i 144
1-7 Data Group Registerso.eiuiiiiiii it 1-4
1-8 Baseand Index Registers i 1-4
1-9 Control Registers ... s 1-5

1-10 iAPX 88 Architecture Quick Access to.Four Segment Types 1-6

1-11 Segment Registers e 1-6

1-12 How an Address is Built e 1-6

1-13 Process Relocation e 1-8

1-14 iAPX 88 AdAressing MOGESottt 1-8

1-15 Four-Component Addressing Exampleiiiiiiiiiiiiiiiiiiiiinnnn. 1-9

1-16 Data Transfer Instructions ...ttt 1-10

1-17 Arithmetic InStruCtions i e 1-10

1-18 Bit Manipulation Instructions i 1-11

1-19 String INStrUuCtioONS ..o e e 1-11

1-20 Program Transfer Instructions. i 1-12

1-21 Processor Control Instructionst 1-13

1-22 8088 Bus Interface is Similarto 8085 1-14

1-23 Multiplexed Bus Components for Low Chip-Count Applications 1-15

1-24 iAPX 88 Bipolar Support Componentsoiiiiiiiiiiiiiiiiiiii 1-16

1-25 iAPX 88 Longer Memory Access TiMeoiuiiiiiiiiiniieiiiineennnen. 1-17

1-26 iAPX 88 Processor EXtensionsooiiiiiiiiiiiiii i 1-18

CHAPTER 2 ,

2-1 How to Address One Million Bytes ..., 2-2
2-2 8088 Register Structureo e 2-3
2-3 impiicit Use of Generai Registersc.ooiiiiiiiiiiiiiiiiiiiiiennnn.. 2-4
2-4 Defining Bits in Instructions with One and Two Operands 2-6
2-5 Determing First Operand ...ttt 2-7
2-6 Effective Addresses Used with Different Data Structures 2-7
2-7 8088 Address COmMpPOoNeNntSciuiiiniiiiiiiiii i 2-7
2-8 Reserved and Dedicated Memory Locationscccoiiiiiiiiiiiia.. 2-8
2-9 Interrupt Vector Table in Memoryt 2-9

2-10 Effective Address Calculation Time, 2-17

2-11 Translation ProCessiiiiit it e e e 2-19

2-12 Assemblers and Compilerso.oiiriiii e 2-19

2-13 Delimiters in ASM-86 ...ttt i 2-24

2-14 ASM-86 Reserved WOrdscuviuiiiititii i, 2-43,44

References for Instruction Set il 2-45,47
(continued)

List of Figures (cont.)

CHAPTER 3 Page
-1 8088 CPU PiNs ...ttt et et et e e e e e 3-1
3-2 Time Multiplexing of Addressand Data coiiiiiiiinininnn.... 3-2
3-3 Decoding of Status Signals S3-S6 c.iiiiiiiii i 3-2
3-4 iAPX 88 Multiplexed Bus System ... 3-4
3-5 iAPX 88 With Buffered Demultiplexed Bussesccoiiiiiiiiin... 3-5
3-6 iAPX 88 Status Decodingiiii 3-5
3-7 IAPX 88 Basic Machine CycCleociiiiiiiinin i iiiiaiiiaanans 3-7
3-8 iAPX 88 Compatible Multiplexed Bus Components 3-8
3-9 Multiplexed Bus Connections ST RIS A SO e 3-10

3-10 Demultiplexed Bus Connections D A AT S 3-11

3-11 iAPX 88 With Buffered Demultiplexed Busses PP 3-12

3-12 How 16-bit Data is Arranged in 8-bitMemory 3-13

3-13 Generating Clock Signal With 8284A i 3-13

3-14 CPU State Following Resetoiiiiiiiiiiii it nianens 3-14

3-15 iAPX 88 Bus Condition During Resetcoveiiiieirineeeiinnennnn.. 3-15

3-16 IAPX 88 BuUS DUNNG RESEt ...ttt ettt e 3-15

3-17 8284A Reset CirCUitc.oiiniii i e 3-16

3-18 Constant Current on Reset Circuit00 i 0000 PR 3-16

3-19 Normally READY Wait State Timing [e e 3-17

3-20 Normally Not READY Wait State Timingc.cc.ieuiiiiininienennennenn... 3-18

3-21 Using RDY 1/RDY 2 to Generate READY R LR S 3-19

3-22 Using AEN1/AEN2 to Generate READYciniiiiiiriienennnnnnnns 3-19

3-23 Single Wait State Generatorciienen.. et e st d 3-19

3-24 Interrupt Acknowledge Sequence N P P, 3-20

3-25 Interrupt Vector Table in Memoryt 3-21

3-26 Interrupt Priorities Yivii... 3-23

3-27 iAPX 88 Bus Condition During HOLD0....0. ... T NS 3-24

3-28 iAPX 88 and 8237A Connections R A R ST A RN 3-25

3-29 HOLD/HLDA Timing oottt e et 3-26

3-30 iAPX 88 Using Maximum Modeccooiiiiiiiiiiiiiiininiiinnanns. 3-26

3-31 Min./Max. Mode Pin Assignmentsciiiiiiiiiiiiiii i, 3-27

3-32 Queue Status Decoding iiiiiii i e 3-27

3-33 Request Grant Sequence Time (Max. Mode Only)c.coouiu.... 3-28

3-34 iAPX 88/21 Configurationc.iiiiiiii i 3-29

CHAPTER 4
4-0 iAPX 88 Multiplexed System Design Exampleccoi.n.. 4-1
4-1 iAPX 88 Demo Board Address Mapoviiiiiiiiiiiiiiiie e 4-2
4-2 Vest Pocket Computer Component Layout ...t 4-3
4-3 Vest Pocket SChematiCoiuiiiiiiiiieii ittt 4-4
4-4 iAPX 88 Demultiplexed Bus System 4-6
4-5 2114 Chip Select Connectionciiiiiiiiiiii i, 4-9
4-6 IAPX 88 S100 BUS SYStemM ...\ttt 4-9
4-7 iIAPX 88 S100 SchematiCoiiuiiii i 4-10
4-8 CRT Controller Block Diagramoiiiiiiiiiaiiiia i 4-13
4-9 8276 Row Buffer Loadingooiiiiiiii 4-14

4-10 Escape Character Recognition Codec.ccoiiiiiiiiiiiinnnnn.. 4-15

4-11 iAPX 88 Multiprocessing Systemt 4-16

4-12 Typical iAPX 88 Local Mode Configurationccooiiinin.... 4-17

4-13 Typical 8089 Remote Mode Configurationc.coivinin.... 4-19

4-14 iAPX 86,88 Multiprocessing System i 4-20

(continued)

List of Figures (cont.)

SUPPLEMENT Page
S-1 Microcomputer Block Diagramoiiiiiiiiii i S-1
APPENDIX

PAPX 88 vS. Zilog Z80ot 1
Table 1 ArChiteCtUre FEAIUIESeoeeeeee ettt e e e e eeeeenn 2
Table 2 Execution Times iAPX 88 vs. Z80At 5
Table 3 Execution Times iAPX88vs. Z80B T 6
Table 4 Execution Times with Comparable Memory Access 6
Table 5 Execution Times with Comparable Memory ACCessc...oouinn 7
Table 6 Ease of Programming iAPX 88 vs. Z80ottt 7
Table 7 Memory Utilization (ByteS)couiiriiiiiiii i 8
Table 8 Performance BreakdOwn i 9
Fig. 1 16-bit Multiply Flowchart i 11
Fig. 2 Block Translate Flowchart P O S L SN 14
Fig. 3 BubbIe SOrt ... 17
iAPX 88 vs. Motorola MC6809t 20
Table 1 Architecture FEaturescciiiiiiiiiiiiiii ittt 21
Table 2 Execution Times (56 MHz 88/10vs. 2 MHz 6809), 24
Table 3 Execution Times with “Equal” Memory Access Times 25
Table 4 Memory Utilization (Bytes) ...t 25
Table 5 Ease of Programmingoiiitininiininiiiiiiiioiaaian s 26
Table 6 Performance Breakdown 27
Fig. 1 16-bit Multiply Flowchart e 28
Fig.2 Block Move Flowchart PN S R P 31
Fig. 3 Character Search Flowchart ...t 34

vi

Introduction T 1
IAPX 88

CHAPTER 1
INTRODUCTION

WHAT IS THE 8088?

AniAPX 88* Microcomputer system has the
three main elements typical to most compu-
ter systems: The central processor (8088
CPU), the input/output ports, and memory
(Fig. 1-1).

The iAPX 88 is unique in many ways, how-
ever, and the remainder of this chapter
describes the basics of the 8088 CPU and
iAPX 88 Microcomputer systems.

One of the most unique aspects of the 8088
is shown in the simple block diagram (Fig.
1-2). The 8088 combines the powerful resour-
ces of a 16-bit microprocessor internal
architecture with an easy-to-use 8-bit bus
interface. The bus interface is easy for hard-
ware designers because it is similar to other
8-bit microprocessors. In particular, most of
the bus lines are identical in function to the
popular 8085A. Those designers who have
interfaced memories and 1/ O devices to 8085

*IAPX refers to the entire microsystem built around
the 8088 CPU.

microprocessors will find it easy to incorpo-
rate the 8088 into new systems.

16-BIT POWER ON AN 8-BIT BUS

The 16-bit internal architecture provides 16-
bit wide registers, data paths, a 16-bit ALU,
and a set of powerful 16-bit instructions iden-
tical to the ones found in the popular 16-bit
8086 microprocessor.

With this new internal architecture, the 8088
has features that were never before available
with an 8-bit microprocessor. Among these
features is a 20-bit memory address range
and a 16-bit input/output port address range
for I/O cycles. This gives the 8088 a full
megabyte (1,000,000-plus bytes) of memory

(D

IT (SJAPABILITY TO 8-BIT

16-BIT

8085A
ARDITERNAL ¢ BUS INTERFACE

Figure 1-2. 8088 CPU

<: ADDRESS BUS

.

MEMORY

170

2\

DATABUS

G

<: CONTROL BUS

Figure 1-1. Microcomputer Block Diagram

1-1

INTRODUCTION

addressability and 64,000 bytes. of I/O
addressability.

The iAPX 88 instruction set includes a full
complement of arithmetic operations includ-
ing addition, subtraction, multiplication, and
division, on 8-bit or 16-bit quantities. This
gives the 8088 the highest computational
throughput of any 8-bit microprocessor for
numerics intensive applications. The 8088
also has a complete set of string manipula-
tion operations for performance and flexi-
bility in applications where large amounts of
data are involved.

To make efficient use of its megabyte of
memory addressing, the 8088 provides the
most powerful range of addressing modes
available to the programmer; from simple

immediate addressing (data contained in the

instruction) to complex addressing built from
four components (three registers plus imme-
diate data). More details are provided on
addressing modes later on in this chapter.

The 8088 has built-in hardware support for
multi-processor systems to coordinate re-

devices among multiple processors.

Finally, and possibly the most powerful
advantage: the 8088 is 100% code compatible
with the 16-bit 8086 CPU. All the power of
the 8086 16-bit instruction set is available in
the 8-bit 8088. So, iAPX 88 systems are easily
upgradable to iIAPX 86 16-bit systems because
of this complete instruction set compatibility.

HOW THE 8088 PIPELINED
ARCHITECTURE INCREASES SYSTEM
PERFORMANCE '

Figure 1-3 shows how programs are executed
over time in a standard microprocessor.
First, the microprocessor must fetch the
instruction to be performed, then it executes
the instruction. Only after the execution is
complete is the CPU ready to fetch in the
next instruction, execute that instruction, etc.
as the program proceeds from beginning to
end.

The CPU hardware that executes instruc-
tions must - obviously wait until the
instruction is fetched and decoded before
execution begins. Therefore, in standard
microprocessors, the execution hardware
(primarily the control circuitry and the
arithmetic and logic unit) spends a lot of time
waiting for instructions to be fetched. The
8088 eliminates this wasted time by dividing
the internal CPU into two independent func-
tional units (Fig. 1-4).

EXECUTION|/” INSTRUCTION BUS
UNIT PIPELINE | INTERFACE
PELINE N
SYSTEM BUS

PIPELINED ARCHITECTURE DELIVERS HIGHER
PERFORMANCE WITH REDUCED BUS “DEAD

TIME”

Figure 1-4. Pipelined Internal Architecture

FETCH EXECUTE

FETCH

EXECUTE FETCHe oo

TIME —>

Figure 1-3. Program Execution in Standard Microprocessor

1-2

INTRODUCTION

Bus Interface and Execution Units

Work in Parallel

The 8088 has a separate bus interface unit
called the BIU whose only job is to fetch
instructions from memory and pass data to
and from the execution hardware to the out-
side world over the bus interface. Since the
execution unit and the bus interface unit are
independent, the bus interface unit fetches
additional instructions while the execution
unit (sometimes called the EU) executes a
previous instruction. This is made possible
by the -instruction pipeline (or queue)
between the bus interface unit and the execu-
tion unit; the bus interface unit fills this
pipeline with instructions awaiting execu-
tion. Thus, whenever the execution unit
finishes executing a given instruction, the
next instruction is usually ready for imme-
diate execution without delays caused by
instruction fetching. Figure 1-5 shows paral-
lel fetching and executing in the 8088 CPU.
BENEFITS OF PIPELINING

Because the BIU is usually busy fetching
instructions for the pipeline, the 8088 bus is

more fully utilized making efficient use of
the iAPX 88 system bus structure. Parallel

fetching and executing also gives the 8088

almost as much performance as a micropro-
cessor that moves data 16-bits at a time.

Another benefit of the parallel operation is
that since the execution unit seldom needs to
wait for the BIU to fetch the next instruc-
tion, there is less need for the BIU to fetch
data quickly. Thus, the 8088 BIU allows
maximum performance and processing
power without high speed memory devices in
the system.

The only time instruction fetch time is not
totally transparent is when program execu-
tion transfers to a new, non-sequential
address. When this happens, the bus inter-
face unit is given the new address by the
execution unit; it then begins fetching instruc-
tions sequentially from the new address. The
execution unit must wait for the next
instruction to be fetched the way most
microprocessor units wait for every instruc-
tion to be fetched. After the first instruction
is fetched from the new location the bus
interface unit again continues to fill the pipe-
line with instructions and fetch-time be-
comes transparent.

HOW THE 8088 REGISTER RESOURCES
PROVIDE EFFICIENT PROGRAM CODING
Figure 1-6 provides an overview of the regis-
ters available in the 8088 CPU. The 8088
provides the largest number of continuously
available registers of any 8-bit microproces-

BIU | FETCH FETCH FETCH FETCH FETCH SEn
EU | waIT EXECUTE EXECUTE EXECUTE

Figure 1-5. Parallel Operation in 8088 CPU

1-3

INTRODUCTION

sor. Within the general register group there
are eight 16-bit registers. Four of these can be
referenced alternately as either 16-bit or as
eight 8-bit registers. All of these registers are
available to the programmer for general pur-
pose activities,

In addition to the general registers, there are
two 16-bit control registers and four 16-bit
segment registers. The function of all 8088
registers is described in more detail in the
following paragraphs.

Data Registers

The data group registers which, in their 16-bit
form, are the AX, BX, CX and DX registers
(Fig. 1-7). For 8-bit operations they are
broken up into a high byte and low byte. AH
is the high byte of the AX register, AL is the
low byte of the AX register, and so on. As
mentioned, these registers have general usage
for simple arithmetic and logical operations.

Some registers have additional special func-
tions which are performed in the execution of
certain instructions. For example, the CX
register is frequently used to contain a count
value during repetitive instructions. The BX

.
L DATA -
& GENERAL
[noex 1 REGISTERS
L POINTER -
J
1\ conTROL
[CONTROL } REGISTERS
E 1 \ segment
[SEGMENT 1 } REGISTERS

register is used as a base register in some of
the more powerful addressing modes.

Pointer and Index Registers

Figure 1-8 shows the pointer and index regis-
ters. The BP and SP registers both point to
the 8088’s stack, a linear array in the 8088’s
memory used for subroutine parameters,
subroutine return addresses, or other data
temporarily saved during execution of an
8088 program.

Most microprocessors have a single stack
pointer register called the SP. The 8088 has
an additional pointer into the stack called the
BP or the base pointer register. While the SP
is used similar to stack pointers in other
machines (for pointing to subroutine and

AH AL AX
BH BL BX
CH CL CX
DH DL DX

Figure 1-7. Data Group Registers

BP & SP FOR BP
STACK PARAMETER

PASSING SP
S1& DIFOR Si
STRING MANIP. &

DATA STRUCTURES DI

THESE CAN ALSO BE USED AS GENERAL
REGISTERS

Figure 1-6. 8088 Register Set

Figure 1-8. Base and Index Registers

INTRODUCTION

interrupt return addresses), the BP register is
available to the programmer for whatever use
he desires. The BP register can contain an old
stack pointer value, or it can mark a place in
the subroutine stack independent of the SP
register. Using the separate BP register to
mark the stack saves the juggling of a single
stack pointer to reference subroutine parame-
ters and addresses.

The two index registers are the SI (source
index) register and the DI (destination index)
register (Fig. 1-8). These are both 16-bits
wide and are used by string manipulation
instructions and in building some of the more
powerful 8088 data structures and addressing
modes. Both the SI and DI registers have
auto-incrementing and auto-decrementing capa-
bilities. All base and index registers have
general arithmetic and logical capabilities in
addition to their special functions.

Control Registers

Figure 1-9 shows two 16-bit control registers.
First is the IP or instruction pointer which
points to the next instruction the bus inter-
face unit will fetch. (The instruction pointer is
similar to a Program Counter used in other
microprocessors, except that the IP points to
the next instruction being fetched, whereas
the traditional program counter points to the
next instruction to be executed). The second
16-bit control register (Fig. 1-9) contains flags
or condition codes that reflect the results of

arithmetic or logical operations as they are
performed by the execution unit.

Segment Registers

The fourth group of registers, called the seg-
ment registers, are used by the 8088 in the
formulation of memory addresses. Segment
register -usage is described in the following
section on memory addressing.

THE iAPX 88 MEGABYTE MEMORY
ADDRESSING MEANS QUICK ACCESS
TO COMPLEX DATA STRUCTURES

As mentioned, the 8088 generates a 20-bit
memory address during every memory refer-
ence operation, to address one million
(1,048,576) bytes of memory. These bytes are
stored sequentially starting from byte 0 to
byte FFFFF in hexidecimal or base 16 nota-
tion. The 8088 has three uses for the memory
it addresses: programs, data and stack. The
8088 may separate data into “local data” used
by a particular program segment and “global
data” accessable to all program segments.
Alternately, you may have two data areas
accessable to a given program at any point in
time.

Every 20-bit memory address points either to
program code, data, or stack area in memory
(Fig. 1-10). For each of the four different
memory spaces, the 8088 has a segment base
register. Each segment register points to the
base address of the corresponding area in

FLAGS OF | DF

TF | SF | zF AF PF CF

Figure 1-9. Control Registers

1-5

INTRODUCTION

memory (Fig. 1-11). The code segment regis-
ter points to the base of the program
currently running. The stack segment register
points to the base of the 8088’s stack, the data
segment register -points to the base of one
data area, and the extra segment register
points to the base of another area where data
can be stored. Each segment register-is 16-bits
wide, and one of the four is used in the com-
putation of every memory address that the
8088 generates. :

How are Addresses Generated?

Every time the 8088 needs to generate a
memory address, one of the segment registers
is automatically chosen and added to a logi-
cal address (Fig. 1-12).

For an instruction fetch, the code segment
register is automatically added to the logical
address (in this case the contents of the
instruction pointer) to compute the value of
the instruction address.

For an operation referencing the 8088’s stack,
the stack segment register is automatically
added to the logical address (the SP register
contents) to compute the value of the stack
address.

For data reference operation, where either
the data or extra segment registers are chosen

MEMORY
777
STACK
-1 | 7
. DATA 2
=~ l"////////////A
DATA 1
EXTRA > ////////////
RSEEGGlgTEENRTS > PROGRAM
Y
CONTENTS OF 8088 SEGMENT REGISTERS
POINTTO THE BASE ADDRESS OF THE
CORRESPONDING AREAS IN MEMORY.

Figure 1-11. Segment Registers

IMPLICIT
SELECTION
CODE [] SEGMENT
STACK
& | Losica
DATA ADDRESS
EXTRA L .
SEGMENT 20BIT
REGISTERS PHYSICAL
ADDRESS

Figure 1-12. How an Address is Built

MODULE
DATA

MODULE
STACK

SYSTEM
DATA

Figure 1-10. iAPX 88 Architecture Quick Access to Four Segment Types

INTRODUCTION

as the base, the logical address can be made
up of many different types of values: it can be
just the immediate data value contained in
the instruction, or, it can be the sum of an
immediate data value, plus a base register,
plus an index register.

For the sum of the addition to be 20-bits
wide, the segment register value is automati-
cally shifted left by four binary bits before it
is added to the 16-bit logical address. The
result is always 20-bits of physical address.

Note that since logical addresses are always
16-bits wide, you can address up to 64,000
bytes in a' given segment without changing
the value of the segment base register. In sys-
tems that do not have more than 64,000 bytes
of program plus 64,000 of stack, plus 64,000
bytes in each of two different data areas, it is
possible to set the segment registers at the
beginning of the program and then forget
them. In a system where the rofal amount of
memory is 64,000 bytes or less, it is possible
to set all segment registers equal and have
fully overlapping segments.

On the other hand, segment registers are very

1
useful when you have a large programming

task and you want isolation between your
program code and the data area or isolation
between module data and the stack informa-
tion, etc. Segmentation also makes it easy to
build relocatable and/ or reentrant programs.

RELOCATABLE AND REENTRANT
PROGRAMS

In many cases, the task of relocating an 8088
program (relocation means having the ability
to run the same program in several different
areas of memory without changing the pro-
gram itself) simply requires moving the
program code and then adjusting of the code
segment register to point to the base of the
new code area. Since programs can be writ-
ten for the 8088 where branches or jumps in
program flow may occur using new locations

1-7

relative only to the instruction pointer, the
program does not care what value is kept in
the code segment register. Figure 1-13 shows
how an entire process, consisting of code,
stack and data areas, can be relocated.

Likewise in a reentrant program, a single
program uses multiple data areas. Before the
reentrant code is entered the second time, the
data segment register value is changed so that
a different data area is made available to the
program.

ADDRESSING MODES

Now, let’s continue our discussion of address-
ing modes, providing more detail about how
addresses are formed.

The 8088 has 24 different addressing modes
to generate logical addresses. Figure 1-14
shows the different logical address combina-
tions, from the simplest immediate data
mode to the register addressing mode, where
a selected register contains the data being
used by the instruction. In the direct address-
ing mode, the instruction itself contains the
address of the data. In the register indirect
mode, the instruction points to a register con-
taining the memory address of the desired
data. There are both indexed and based
addressing modes where the contents of an
index or based register is added to an imme-
diate data value contained in the instruction
to form the memory address.

Exactly how the 8088 selects an addressing
mode for a given instruction is encoded

-within the bits of the instruction code. This is

discussed in more detail in Chapter 2.

If we examine the most complex and power-
ful of the addressing modes, which includes
base register, index register, and displace-
ment in the logical address, it can be seen that
some fairly complex data structures can be
easily addressed in a single instruction by the
8088.

INTRODUCTION

MEMORY
BEFORE RELOCATION

SEGMENT CODE : CODE
stack |i[sTack
STACK DATA DATA ,
SEGMENT — ExtRa |i] ExTRA |
, | %
' CODE
SEQMENT | g | SEGMENT
; STACK
/ | SEGMENT
// . SEGMENT
EXTRA
SEQMENT | .| SEGMENT
V% i V%

TO RELOCATE AN ENTIRE PROCESS MOVE THE CODE,
STACK, AND DATA, AND UPDATE THE SEGMENT REGISTER
CONTENTS TO POINT TO THE NEW AREAS.

Figure 1-13. Process Relocation

LOCATION OF DATA

MODE
IMMEDIATE WITHIN INSTRUCTION
REGISTER IN REGISTER
DIRECT AT MEMORY LOCATION POINTED TO BY ADDRESS CONTAINED IN

INSTRUCTION.

REGISTER INDIRECT

AT MEMORY LOCATION POINTED TO BY ADDRESS CONTAINED IN
REGISTER.

INDEXED OR BASED

AT MEMORY LOCATION POINTED TO BY SUM OF INDEX REGISTER
OR BASE REGISTER CONTENTS AND IMMEDIATE DATA CONTAINED
ININSTRUCTION.

BASED AND INDEXED
WITH DISPLACEMENT

MEMORY ADDRESS IS SUM OF BASE REGISTER CONTENTS AND
INDEX REGISTER CONTENTS AND IMMEDIATE DATA.

THE LOCATION OF DATA IS REALLY THE LOGICAL ADDRESS, WHICH IS ADDED TO THE SEGMENT
REGISTER VALUE TO FORM THE PHYSICAL MEMORY ADDRESS.

Figure 1-14. iAPX 88 Addressing Modes

1-8

INTRODUCTION

FOUR-COMPONENT ADDRESSING

An example of four-component addressing
(three-component logical address plus seg-
ment base) is shown in Figure 1-15, and is
described as follows:

Suppose you’re writing a program to com-
pute the payroll for a large corporation. This
corporation has several groups of employees.
Within each group there are multiple em-
ployees, and for each employee certain data
is kept in a record of information. Included
in this data are the employee’s address, social
security number, and a wage code indicating
how much that employee is being paid.

The task at hand is to select the wage code for
a particular employee from the entire com-
plex array of employee data. The 8088 can do
it with a single instruction after the registers
are set up. Here’s how: First, set the data
segment register to the base of the employee
data, set a base register such as BX to contain
the offset number of bytes between the
employee data base address and the start of
the data that applies only to the desired
group of employees. Next we set an index
register such as SI to index to the desired
employee’s information within the given
group of employees. Finally, we use an abso-

lute displacement value to point to the given
employee’s wage code within the employee’s
data record.

The single instruction MOV AX, [BX + SI+ 12]
then, will select the appropriate employee’s
wage code. To implement the same function
with any other 8-bit microprocessor would
require multiple instructions to build the
address.

Symmetric Use of Memory

Another way these powerful addressing
modes work is that memory locations can be
used as either source or destination operand
of most instructions. A single 8088 instruc-
tion can perform a logical AND between the
contents of a given memory address and an
immediate data value, and store the results
back in the same memory address. The equi-
valent function would take multiple
instructions on an 8-bit processor such as
an 8080. It is as though you can treat any
memory location as a CPU register for sim-
ple arithmetic and logic operations. Follow-
ing are several operations which can be
performed directly on memory locations.

AND [memory address], 7FH
OR [BX + SI + 12}, 1F80H
ADD [memory address], 2500

PAYROLL
DATA

I

DISPLACEMENT = 12 (WAGE CODE)

INDEX = SI(EMPLOYEE #N)
BASE = BX (EMPLOYEE GROUP)
SEGMENT = DS (PAYROLL SEGMENT)

MOV AX,[BX +SI+12];GET WAGE CODE

Figure 1-15. Four-Component Addressing Example

1-

9

INTRODUCTION

THE 8088’s POWERFUL 16-BIT
INSTRUCTION SET

The 8088 has the most powerful instructions
of any 8-bit microprocessor. In addition to
the standard instruction types you would find
on other 8-bit machines, the 8088 offers
powerful 16-bit instructions that perform the
function of multiple instructions on older
8-bit architectures. Figure 1-16 through 1-21
show the various groupings and the instruc-
tion names. ‘

The 14 data transfer instructions (Fig. 1-16)
move single bytes and words between memory
and registers as well as between registers AL
or AX and I/O ports. The stack manipula-
tion instructions are included in this group as
are instructions for transferring flag contents
and for loading segment registers.

8088 arithmetic operations (Fig. 1-17) may be
performed on four types of numbers: un-
signed binary, signed binary integers,

unsigned packed decimal ‘and unsigned
unpacked decimal numbers. Binary numbers
may be 8-bits or 16-bits long, decimal
numbers are stored in bytes, two digits per
byte for packed decimal, and one digit per
byte for unpacked decimal.

The 8088 provides three groups of bit manip-
ulation instructions: (Fig. 1-18) for
manipulating bits within bytes. and words
and for performing logical shifts and rotates.
The logical instructions include the Boolean
operators NOT, inclusive OR, exclusive OR,
plus a TEST instruction that sets the flags
but does not alter either of its operands.

The bits in bytes or words may be shifted
arithmetically or logically by the shift instruc-
tions. Up to 255 shifts may be performed
according to the value of the count operand
caded in the instruction. The count may be
specified as the constant “1” or as the con-

" ADDITION
GENERAL PURPOSE ADD Add byte or word
ADC Add byte or word with carry
MoV Move byte or word INC Increment byte or word by 1
PUSH Push word onto stack ~AAA ASCll adjust for addition
POP Pop word off stack DAA | Decimal adjust for-addition -
XCHG " Exchange byte or word SUBTRACTION
XLAT Translate byte SUB Subtract byte or word
SBB Subtract byte or word with borrow
INPUT/OUTPUT DEC Decrement byte or word by 1
IN Input byte or word gl\sl(lf’ (I\:legate byte or word
ompare byte or word
OUT .. Qutputbytsorword AAS ASCIl adjust for subtraction
ADDRESS OBJECT DAS Decimal adjust for subtraction
LEA Load effective address MULTIPLICATION
LDS Load pointer using DS m/ILiJLL |M;1Itiply byltt? c:r\gotrd unsigr;ed
- - nteger multiply byte or wor
LES Load polnter using ES AAM | ASCIT adjust for multiply
FLAG TRANSFER DIVISION
LAHF Load AH register from flags DIV Divide byte or word unsigned
SAHF Store AH register in flags IDIV Integer d,'v'de bytg or word
- AAD ASCII adjust for division
PUSHF Push flags onto stack CBW Convert byte to word
POPF Pop flags off stack CWD Convert word to doubleword

Figure 1-16. Data Transfer Instructions

Figure 1-17. Arithmetic Instructions

INTRODUCTION

tents of register CL, allowing the shift count
to be a variable supplied during program
execution, Bytes and words also may be
rotated. Bits rotated out of an operand are
not lost as in a shift but are circled back into
the other end of the operand.

POWERFUL STRING PROCESSING

Five basic string instructions called primitives
allow a string of bytes or words to be oper-
ated on, one byte or word at a time. Strings
of up to 64K bytes may be manipulated with
these instructions. Instructions are available
to move data from a source string to a desti-
nation string, or to compare two strings, or
to scan one string for a given value. In addi-
tion, string instructions are provided to move
string elements to and from the AX register
in the 8088 (Fig. 1-19).

The specified operation is performed only
once when the string primitive is encountered

in the program. If the programmer desires
the operation to be performed repetitively,
such as in a block or string manipulation
operation, the basic string primitive may be
proceeded by a special one byte “prefix” that
causes the instruction to be repeated by the
hardware. This prefix is called REPEAT.
The use of the REPEAT prefix allows long
strings to be processed much faster than
would be possible with a software loop. The
repetitions can be terminated by a variety of
conditions and a repeated operation may be
interrupted and resumed. The CX register
counts the number of times the string opera-
tion is performed.

When the 8088 moves a 16-bit quantity, it
does so 8 bits at a time automatically in the
hardware. Because of the variety of string
operations and the fact the 8088 can move
both 8-bit and 16-bit quantities using its
string instructions, the 8088 has the most
powerful string processing capabilities of any

LOGICALS 8-bit microprocessor.
NOT “Not” byte or word _The‘program transfer' mstruc.tlons are shown
Y T — in Figure 1-20. These instructions redirect the
oR — - Y — flow of instruction execution to other loca-
R Inclusive or”” byte or word tions in memory and many of them are
XOR ““Exclusive or’’ byte or word equivalent to instructions found in other 8-bit
TEST “Test’’ byte or word
SHIFTS MOVS Move byte or word string
SHL/SAL Shift logical/arithmetic left MOVSB/MOVSW | Move byte orword string
byte or word CMPS
SHR Shift logical right byte or word Cosrf‘rir’:g'e byte or word
SAR Shift arithmetic right byte or
word SCAS Scan byte or word string
ROTATES LODS Load byte or word string
- ROL Rotate left byte or word STOS Store byte or word string
 ROR . Rotate right byte or word REP Repeat
RCL Rotate through carry left byte -
or word REPE/REPZ Repeat while equal/zero
RCR Rotate through carry right REPNE/REPNZ | Repeat while not
byte or word equal/not zero

Figure 1-18. Bit Manipulation Instructions

Figure 1-19. String Instructions

INTRODUCTION

microprocessors. The 8088, however, offers
much more flexibility in how an instruction is
performed. The unconditional transfer instruc-
tions may transfer control to a target
instruction within the current code segment
for an intrasegment transfer, or to a different
code segment with an intersegment transfer.
The transfer is made unconditionally any
time the instruction is executed. An intra-
segment transfer is always made relative to
the current value of the instruction pointer.
Program segments which only use intraseg-
ment transfers are, therefore, relocatable in
memory. The conditional transfer instruc-
tions may or may not transfer control,
depending on the state of the CPU flags at
the time the instruction is executed.

The 18 instructions (Fig. 1-20), each test a
different combination of flags for a condi-
tion. If the condition is true, control is
transferred to the target address specified for
the instruction. If the condition is false, then

control passes to the instruction that follows
the conditional jump.

The iteration control instructions regulate the
repetition of software loops. These instruc-
tions use the CX register as a counter. The
LOOPNE instruction for instance decre-
ments a count, checks to see if the count is
zero, and branches back to the beginning of
the program loop. The equivalent function
would require multiple instructions in an
older 8-bit instruction set, such as the 8080’s.

The interrupt instructions allow interrupt
service routines to be activated by both pro-
grams and external hardware devices. The
effect of software initiated interrupts is sim-
ilar to hardware initiated interrupts.
The.processor control instructions (Fig. 1-21)
allow programs to control various CPU func-
tions to update flags and to synchronize the
8088 with external events. Finally, the NOP
instruction causes the 8088 CPU to do
nothing.

CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS
JA/INBE Jump if above/not below nor equal CALL Call procedure
JAE/JNB Jump if above or equal/not below RET Return from procedure
JB/UNAE Jump if below/not above.nor equal JMP Jump
JBE/JNA Jump if below or equal/not above
JC Jump if carry ITERATION CONTROLS
JE/JZ Jump if equal/zero
JG/JINLE Jump if greater/not less nor equal LOOP Loop
JGE/JNL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero
JL/INGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero
JLE/ING Jump if less or equal/not greater JCXZ Jump if register CX =10
JNC Jump if not carry
JNE/JNZ Jump if not equal/not zero INTERRUPTS
JNO Jump if not overflow
JNP/JPO Jump if not parity/parity odd INT Interrupt
JNS Jump if not sign INTO Interrupt if overflow
Jo Jump if overflow IRET Interrupt return
JP/JPE Jump if parity/parity even
JS Jump if sign

Figure 1-20. Program Transfer Instructions

1-12

INTRODUCTION

Well-Planned Instructions

The 8088 instructions can be from one byte
to seven bytes in length, depending on the
number of operands and immediate data
fields included in the instruction. Great care
has been taken in the design of the instruc-
tion set to allow for efficient programs to be
written. The 8088 instructions need not be
word aligned (starting at even addresses) con-
trary to many other 16-bit instruction sets,
therefore saving bytes otherwise wasted. It is
also possible to use one-byte constants, one-
byte displacements, and jump offsets, saving
code when compared with other machines
that always require 16-bit quantities be used.

The 8088 instruction set also has been
designed such that some registers are always
used for certain functions. The CX register,
for example, is used for a count value by
some repetitive instructions. This implied use
of registers allows shorter programs because
the register address need not be contained in
those instructions.

Because of the symmetric use of memory and
the ability to build sophisticated data struc-

FLAG OPERATIONS

STC Set carry flag

CLC Clear carry flag

CMC Complement carry flag

STD Setdirection flag

CLD Clear direction flag

STi Setinterrupt enable flag

CLI Clear interrupt enable flag
EXTERNAL SYNCHRONIZATION

HLT Halt until interrupt or reset

WAIT Wait for TEST pin active

ESC Escape to external processor

LOCK Lock bus during next instruction

NO OPERATION
NOP No operation

Figure 1-21. Processor Control Instructions

1-13

tures using the 8088 addressing modes, the
8088’s instruction set is ideal for the imple-
mentation of higher level languages. And
because the instruction set is bit-efficient, the
higher level language programs consume less
memory. Benchmarks have shown that the
8088 can generate both assembly language
and higher level language programs with 30%
less source and object code than other 8- and
16-bit microprocessors. This code savings
results in both higher performance and lower
memory cost. The instruction set of the 8088
is discussed in more detail in Chapter 2.

INTERFACING THE 8088 IS EASY,
FLEXIBLE

We have talked at some length about what
goes on inside the 8088, what its instruction
set is and the resources available for the pro-
grammer. Following is a brief overview of
how the 8088 interfaces with other compo-
nents in an iAPX 88 system.

Figure 1-22 is a simple diagram showing
some of the bus interface lines that are pro-
vided on the 8088 CPU chip. The 8088 is
shown here opposite the 8085A, another
popular 8-bit microprocessor, to emphasize
the similarity between the two interfaces.
Both the 8088 and the 8085A time-multiplex
the low order 8 bits of the address bus with
the 8- bits of the data bus. This means that
during part of an 8088 machine cycle, the 8
bits of the multiplexed bus (ADy-AD7) con-
tain address information, and during the
remainder of the machine cycle the same 8
lines contain data being transferred to/from
the 8088. On both the 8088 and the 8085A
there is a control line, called ALE, which sig-
nals when the multiplexed address and data
lines contain address information. ALE can
be used to enable an external latch to latch
up the address for the remainder of the
machine cycle.

INTRODUCTION

The next higher order address lines, Ag
through Ajs, are present throughout the
machine cycle on both the 8088 and the
8085A. Note that the 8088 has four other
address lines, Ajg through A9 not present
on the 8085A and which the 8088 time-
multiplexes with status information during
the machine cycle.

The three control lines RD, WR, and I/O M
signal the actual data transfer during a
machine cycle, whether the 8088 is reading or
writing, and whether that transfer is taking
place with respect to I/ O devices or memory

devices. Also, the 8088, like the 8085A, has
other lines containing cycle status infor-
mation available at the beginning of the
machine cycle to inform other devices in the
system what type of machine cycle is being
performed.

There are several other control lines used
with the 8088 such as interrupts, HOLD,
READY. See Chapter 3 for details.

Using Special Multiplexed Bus Parts

Because the 8088 is so much like the 8085A,
you may connect the 8088 directly to a whole
family of multiplexed bus components de-

8088 RD 8085A
WR
10/M
DT/R S1
STATUS
SSO S0

{/{/\/\A/\}\/E
NN /\{\/}H

8088 IS AN EASY UPGRADE FOR EXISTING 8-BIT SYSTEMS

Figure 1-22. 8088 Bus Interface is Similar to 8085

1-14

INTRODUCTION

signed for the 8085A, without additional
interface logic. Figure 1-23 shows just a small
system. The multiplexed bus components are
the 8155, the 8355, 8755A, and the 8185.
Each of these contains an internal address
latch that demultiplexes internally the 8088’s
bus. The multiplexed bus devices are highly
integrated as they combine multiple functions
to provide a low cost, high-functionality sys-
tem in a very small number of components.
The 8155 contains 256 bytes of static RAM,
22 parallel 1/O lines, and a 14-bit timer/
counter. The 8355 and 8755A contain 2K
(2048) bytes of either ROM or EPROM, and
16 parallel I/ O lines. The 8185 is a 1K byte
static RAM in a narrow 18-pin package.
Note also in Figure 1-23 that the 8088 uses an
external clock generator chip called the
8284A.There is another multiplexed-bus
memory called the 21821, brand new, that
adds 4K bytes of RAM memory to an iAPX
88 system.

BUILDING A STANDARD INTERFACE

Most applications, of course, require more
memory or I/ O capacity than provided by a
multiplexed bus system like the one just des-
cribed. In the average system, the designer
would like to use some commonly available
non-multiplexed RAM chips for data stor-
age, some standard EPROM or ROM chips
for program storage and some special peri-
pheral devices. To build a standard non-
multiplexed bus structure, a whole family of
support components are provided for use
with the 8088. These support devices are
shown in Figure 1-24.

The 8088’s bus can be demultiplexed very
easily using an 8282 or 8283 latch as shown in
Figure 1-24. The 8282 is a non-inverting 8-bit
latch in a narrow 20-pin package. The 8283
provides inverted outputs over the bus (“1”
inputs become “0” outputs and vice versa).

8284A
CLOCK

8088

I

r 8088 MULTIPLEXED BUS

i

o

8355/8755A

8155
RAM/I0/TIMER ROM/EPROM/I10

8185
RAM

{

=

Figure 1-23. Multiplexed Bus Components for Low Chip-Count Applications

1-15

INTRODUCTION

To provide extra drive capability for the data
lines, the 8286 and 8287 8-bit transceivers are
available; the 8287 being the inverting version
of the 8286. Also shown in Figure 1-24 is the
8288 bus controller. This optional system
device decodes some status information
coming from the 8088 CPU to provide
special control signals for the bus. The 8288
provides separate memory read, memory
write, [/O read, and I/O write control
signals. Without the 8288, the 8085A-
compatible RD, WR, and IO/M signals
would be used.

Also shown in Figure 1-24 is the 8289 bus
arbiter. It is also an optional component used
in multi-master iIAPX 88 systems. A multi-
master system could be one where multiple

8088’s share control of the multi-master bus.
At any one point in time, only one of the
several 8088’s would be allowed to take
control of the bus to access a shared resource
such as a memory. Each 8088 would have its
own 8289 bus arbiter. Handshaking signals
between the 8289’s ensure that only one of
the possible masters takes control of the bus
at a time, thus preventing conflicts between
them.

Once the standard bus structure is created,
the 8088 interfaces easily with standard
memory and peripheral devices. In fact, the
performance requirement on memory devices
and peripherals imposed by an 8088 is much
lighter than any other high-performance 8-bit
microprocessor.

L 8284A
CLOCK
8088
8286/87 8282/83 8288
TRANSCEIVER LATCH CONTROLLER

8289

2
ARBITER

U 1

MULTIMASTER BUS

Figure 1-24. iAPX 88 Bipolar Support Components

1-16

INTRODUCTION

iAPX 88 PERFORMANCE IS

COST EFFECTIVE

Figure 1-25 shows the 8088’s memory speed
requirements compared to other 8-bit micro-
processors. The memory access times listed
refer to the time available from when the
address first comes out of the CPU during a
memory read machine cycle until the data
must be available coming back from the
memory into the CPU.

The 8088 running at SMHz allows 460ns for
memory devices to receive the address and
return the data. The fastest Z80 and the fas-
test 6809 allow only 140ns and 320ns
respectively for the same activity to take
place. This means that the 8088 can offer its
full performance while using slower and pre-
sumably cheaper memories than any other
high-performance 8-bit micropro-
Ccessor.

Note that according to the benchmark
reports in the Appendix, the SMHz 8088 use
slower memories while offering an average of
30% more performance than either the
2MHz 6809 or the 6MHz Z80B.

How does the 8088 offer higher performance
yet use slower memory devices? The main
reason is that parallel instruction fetch and
execute using the instruction pipeline allows

the bus interface to be much more relaxed
while execution takes place at the full speed.
The 8088 can run at full speed using readily
available 450ns EPROM devices whereas its
counterparts, the 68B09 and Z80B require
wait states in their machine cycles to do the
same.

PROCESSOR EXTENSIONS FOR
FLOATING POINT ARITHMETIC

AND HIGH SPEED 1I/O

Up to now, we have justified that the 8088
CPU offers a lot of performance of its own
right, and many systems will be built around
the 8088 as the only central processing unit.
Note that there are other ways to expand on
the 8088 architecture to add additional pro-
cessing power to the basic CPU. These
additional processing modules are called pro-
cessor extensions. There are two processor
extension chips that can be added to the
iAPX 88 system (Fig. 1-26).

Numerics Processor Extension

The iAPX 88/20 is an optional numerics
processor extension (NPX) added alongside
the 8088 CPU. This configuration has the
effect of adding the additional set of numerics
instructions to the 8088 instruction set. The
NPX picks its own instructions out of the

CPU 8088 68B09 Z80A Z80B
5MHz 2MHz 4MHz 6MHz

MEMORY

AQHCMEESS 460 NS 320NS 250 NS 140 NS

NGER ACCESS TIME MEANS SLOWER (AND
CHEAPER) MEMORIES CAN BE USED WITH iAPX 88

Figure 1-25. iAPX 88 Longer Memory Access Time

INTRODUCTION

8088 instruction stream. The instructions that
the NPX interprets as special purpose numer-
ics instructions are regarded almost like
“no-operations” for the 8088. The NPX con-
tains an additional register set of eight 80-bit
floating point registers which are mani-
pulated with by the additional numerics
instructions. Together, the 8088 with the
NPX have approximately 100 times the per-
formance of a standalone iAPX 88 system
for numerics-intensive applications.

1/0 Processor

The 8089 IOP, on the other hand, does not
receive instructions from the 8088 instruction
stream. It is a separate microprocessor of its
own right with its own instruction set. The
IOP is an input/output channel processor
and off-loads I/ O interfacing from the 8088
general purpose CPU. The IOP’s instruction
set, different from the 8088, is specifically tai-
lored for peripheral control and high speed
data transfer. With the IOP, it is possible to

configure a dual-bus system, where: the 8089
interfaces with peripheral devices on a separ-
ate “local” bus while the 8088 runs its
application programs in parallel, interfacing
with memories over the system bus.

The IOP has a high-speed- direct memory
access. (DMA) mode that transfers data
between memory and peripherals or between
memory and memory at 1.25 megabytes per
second. The IOP is also capable of on-the-fly
processing activities such as masked com-
parison operations or data translations. If
you have an application that requires very
high performance floating point numerics
capabilities, numerous peripheral devices, or
very high performance peripheral devices, the
NPX and IOP should be considered for
inclusion in your system. More information
on these devices is contained in other manu-
als from Intel. This book will focus on single
CPU-systems build around the 8088 alone.

LOCAL I/0 BUS

< >

g U

8088 8087 8089
CPU NPX 0P
ARBITRATION ARBITRATION

PERIPHERALS PERIPHERALS

{

=

< SYSTEM BUS

ARCHITECTURE EXTENDS FOR EVEN MORE PERFORMANCE

>

Figure 1-26. iAPX 88 Processor Extensions

1-18

INTRODUCTION

REVIEW

This chapter has provided a basic intro-
duction to the 8088 CPU and iAPX 88
systems.

The 8088’s pipelined architecture efficiently
uses the available bus time to maximize CPU
performance and make it possible to get
increased performance, even with slower
memory devices.

The 8088’s register set makes a large number
of 16-bit registers available and some registers
have special functions allowing more efficient
instruction encoding for compact programs.

The 8088’s addressing modes provide quick
access to complex data structures.

The 8088’s instruction set includes powerful
16-bit instructions that lead to smaller pro-
grams because many 8088 instructions replace
multiple instruction sequences in other 8-bit
machines.

The smaller 8088 programs run faster.

With the 8088, it is possible to build lower-
cost systems than with other 8-bit micro-
processors because the 8088 requires less
code memory and runs at high performance
with less expensive memories than other §-bit
machines.

Interfacing the 8088 to 8-bit systems is easy
with processor extension chips that further
increase the 8088s performance through
parallel processing using specialized 1/ O and
numeric instructions and registers.

The 8088 is a unique CPU with optimal
combination of performance, ease of use, and
system economy that meets the needs of sys-
tem designers in the 1980’s.

The following chapters describe iAPX 88
software, hardware, and system design in
more detail.

IAPX 88 Architecture 5
And Instructions

CHAPTER 2
THE iAPX 88 ARCHITECTURE AND INSTRUCTIONS

INTRODUCTION

This chapter describes the programmer’s
architecture of the 8088 CPU. The pro-
gramming model is presented first, including
the memory and I/ O port organizations and
the CPU registers. The addressing modes are
described next, followed by an introduction
to the instruction set and the iAPX 88
assembly language. The iAPX 88 instruction
set reference pages that describe each instruc-
tion in detail conclude the chapter.

iAPX 88 ARCHITECTURE

The iAPX 88 processor architecture com-
prises a memory structure, a register structure,
an instruction set, and a set of addressing
modes. The 8088 CPU can access up to one
million bytes of memory and up to 64K input/
output ports.

The 8088 has three register files:

1) data registers to hold intermediate results;
2) pointer and index registers to reference
within specified portions of memory;

3) segment registers used to specify these por-
tions of memory.

The 8088 has nine flags that are used to
record the state of the processor and to con-
trol its operations.

The 8088 instruction set and addressing
modes are richer and more symmetric than
the 8080. And the 8088 external interface,
providing such things as interrupts, multip-
rocessor synchronization, and resource shar-
ing, exceeds the facilities provided in the
8080, the 8085, or the Z80®,

Memory Structure

The 8088 input/output space and memory
space are treated in parallel and are collec-
tively called the memory structure. Code and
data reside in the memory space while (non-
memory-mapped) peripheral devices reside in
the I/ O space.

Z80 is a registered trademark of Zilog Corp.

2-1

Memory Space

The memory in an iAPX 88 system is a
sequence of up to one million bytes (a 64-fold
increase over the 8080). An 8088 word is any
two consecutive bytes in memory. Like the
8080, words are stored in memory with the
most significant byte at the higher memory
address.

The one-megabyte memory can be conceived
of as an arbitrary number of segments, each
containing at most 64K bytes. The starting
address of each segment is evenly divisible by
16 (the four least significant address bits are
0). At any moment, the program can imme-
diately access the contents of four such
segments:

1) Current code segment
2) Current data segment
3) Current stack segment
4) Current extra segment

Each of these segments can be identified by
placing the 16 most significant bits of the
segment starting address into one of the four
16-bit segment registers. By contrast, the
8080 memory structure is simply the 8088
memory structure with all four of the current
segments starting at 0.

An 8088 instruction can refer to bytes or
words within a segment by using a 16-bit
offset address. The processor constructs the
20-bit byte or word address automatically by
adding the 16-bit offset address (also called
the logical address) to the contents of a 16-bit
segment register, with four low-order zeros
appended (Fig. 2-1).

Input/Output Space

The 8088 I/ O space consists of 64K ports (a
256-fold increase over the 8080). Ports are
addressed the same way as memory except
there are no port segment registers. That is,
all ports are considered to be in one segment.
Like memory, ports may be 8- or 16-bits in
size. v

ARCHITECTURE AND INSTRUCTIONS

The first 256 ports are directly addressable
(address in the instruction) by some input/
output instructions, other instructions let you
address the total 64K ports indirectly (address
in a register).

REGISTER STRUCTURE

The 8088 processor contains the thirteen 16-
bit registers and nine 1-bit flags shown in
Figure 2-2. Notice that the thirteen registers
are divided into three files of four registers
each plus.the thirteenth register, namely the
instruction pointer (IP) (called the program
counter in earlier processors). The IP is
not directly accessible to the programmer;
it is manipulated with control-transfer
instructions.

Data Register File

The data registers (top file Fig. 2-2) can be
addressed as either 8- or 16-bit registers.
(Note vertical line showing byte divisions).

15 0
[LocicaLabpress |QFFSELS
S
15 0
[seGmENT REGISTER [o 0 0 0]3EGMENT
N J
ADDER
19 b

20-BIT
l PHYSICAL MEMORY ADDRESSJ

Figure 2-1. How to Address One Million Bytes

The data registers handle both byte and word
quantities with equal ease. Figure 2-2 shows
that the 16-bit registers are named AX, BX,
CX, and DX; and the 8-bit registers are
named AL, AH, BL, BH, CL, CH, DL, and
DH (the L or H suffix designates high-order
or low-order byte).

Generally, the data registers participate inter-
changeably in both arithmetic and logical
operations of the 8088. However, some
instructions (e.g. string instructions) require
certain general registers for specific uses. Fig-
ure 2-3 shows which registers are implicitly
used for special operations. Notice how Fig-
ure 2-3 relates to Figure 2-2.

To review, data registers may be addressed as
either 8-bit or 16-bit registers as shown in
Figure 2-2. The registers in the next 2 files are
addressed only as 16-bit registers.

Pointer and Index Register File

The pointer and index registers of the 8088
consist of the 16-bit registers SP, BP, SI, and
DI as shown in Figure 2-2. These registers
usually contain offset addresses for address-
ing within a segment. They reduce program
size by eliminating the need for each instruc-
tion to specify frequently used addresses.
These registers serve another (and perhaps
more important) function; they provide for
dynamic logical address computation as des-
cribed in the section on operand addressing
below. To accomplish this, the pointer and
index registers participate in arithmetic and
logical operations along with the 16-bit data
registers described above.

Figure 2-2 shows this file divided into the
pointer subfile (SP and BP) and the index
subfile (SI and DI). The pointer registers
provide convenient access to the current
stack segment (as opposed to the data seg-
ment). Unless otherwise specified in the
instruction, pointer registers refer to the cur-
rent stack segment while index registers refer
to the current data segment.

ARCHITECTURE AND INSTRUCTIONS

In certain instances, specific uses of these
four registers are indicated by the mnemonic
phrases “stack pointer,” “base pointer,”
“source index,” and “destination index.” (Fig.
2-2).

Segment Register File

The segment registers of the 8088 are 16-bit
registers. These registers specifically identify
the four currently addressable memory seg-
ments: CS (code segment), DS (data segment),
SS (stack segment), and ES (extra segment).

All instructions are fetched from the current

code segment offset by the instruction pointer
(IP). register. The segment for operand
fetches can usually be designated by append-
ing a special one-byte prefix to the instruc-
tion. This prefix, and other prefixes described
later, has unique encoding that distinguishes
it from the -opcodes. In the absence of such a
prefix (the usual case), the operand is usually
fetched from the current data segment or cur-
rent stack segment, depending on whether
the offset address was calculated from the
contents of a pointer register.

DATA REGISTERS
7 07 0
AX AH ' AL :
BX BH BL
CX CH cL
DX DH DL
POINTER AND INDEX REGISTERS
15 0
SP STACK POINTER
BP BASE POINTER
Si SOURCE INDEX
DI DESTINATION INDEX
SEGMENT REGISTERS
15 0
cs CODE
DS DATA
ss STACK
ES EXTRA
INSTRUCTION POINTER AND FLAGS
15 0
P INSTRUCTION
POINTER
FLAGS lo[o[1]|t]s]z] [a] [r] |c
15 11109 8 7 6 5 43 2 1 0

Figure 2-2. 8088 Register Structure

2-3

ARCHITECTURE AND INSTRUCTIONS

Programs can be dynamically relocated by
changing the segment registers, provided the
program itself does not load or manipulate
the segment registers.

Flag Register File

Six flags provide processor status informa-
tion (Fig. 2-2). Five are the 8080/8085 flags
and usually reflect the status of the latest
arithmetic or logical operation. The sixth, an
OVERFLOW flag, reflects a signed overflow
condition.

The 8088 also contains three flags that con-
trol processor operations. These are the
DIRECTION flag, which controls the direc-
tion of the string manipulations; the INTER-
RUPT FLAG, which enables or disables
external interrupts; and the TRAP flag,
which puts the processor into a single-step
mode for program debugging.

A more detailed discussion of the flags
follows:

1) If AF (the auxiliary carry flag) is set, there
has been a carry out of the low nibble (the
low order 4-bits of a byte) into the high nib-
ble or a borrow from the high nibble into the

REGISTER OPERATIONS

AX Word Multiply, Word Divide,
Word 1/0

AL Byte Multiply, Byte Divide, Byte
1/0, Translate, Decimal
Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CX String Operations, Loops

CL Variable Shift and Rotate

DX Word Multiply, Word Divide,
Indirect1/O

SP Stack Operations

Sl String Operations

DI String Operations

Figure 2-3. Implicit Use of General Registers

low nibble of an 8-bit quantity (low-order
byte of a 16-bit quantity). This flag is used by
decimal arithmetic instructions.

2) If CF (the carry flag) is set, there has been
a carry out of, or a borrow into, the high-
order bit of the result (8- or 16-bit). The flag
is used by instructions that add and subtract
multibyte numbers. Rotate instructions can
also isolate a bit in memory or a register by
placing it in the carry flag.

3) If OF (the overflow flag) is set, an arith-
metic overflow has occurred; that is, a signifi-
cant digit has been lost because the size of the
computation exceeded the capacity of its des-
tination location. An optional Interrupt On
Overflow instruction generates an interrupt
in this situation.

4) If SF (the sign flag) is set, the high-order
bit of the result is a 1. Since negative binary
numbers are represented in the 8086 and 8088
in standard two’s complement notation, SF
indicates the sign of the result (0 = positive, 1
= negative).

5) If PF (the parity flag) is set, the result has
even parity, an even number of 1-bits. This
flag can be used to check for data transmis-
sion errors.

6) If ZF (the zero flag) is set, the result of the
operation is 0.

Three additional control flags (Fig. 2-2) can
be set and cleared by programs to alter pro-
cessor operations:

1) Setting DF (the direction flag) causes
string instructions to auto-decrement, that is,
to process strings from high addresses to low
addresses, or from “right to left”. Clearing
DF causes string instructions to auto-
increment, or to process strings from “left to
right.”

2) Setting IF (the interrupt-enable flag)
allows the CPU to recognize external (mask-
able) interrupt requests. Clearing IF disables
these interrupts. IF has no effect on either
nonmaskable external or internally generated
interrupts.

ARCHITECTURE AND INSTRUCTIONS

3) Setting TF (the trap flag) puts the proces-
sor into single-step mode for debugging. In
this mode, the CPU automatically generates
an internal interrupt after each instruction,
allowing a program to be inspected as it exe-
cutes instruction by instruction.

Instruction Pointer

The 16-bit instruction pointer (IP), as shown
in Figure 2-2, is analogous to the program
counter (PC) in the 8080/8085 CPUs and
points to the next instruction. The instruction
pointer contains the offset (distance in bytes)
of the next instruction from the beginning of
the current code segment. During normal
execution, IP contains the offset of the next
instruction to be fetched. Whenever IP is
saved on the stack, however, it first is auto-
matically adjusted to point to the next
instruction to be executed. Programs do not
have direct access to the instruction pointer,
but instructions cause it to change and to be
saved on and restored from the stack.

Stack Implementation

The 8088’s stack is implemented in memory
and is located by the stack segment register
(SS) and the stack pointer register (SP). A
system may have an unlimited number of
stacks, and a stack may be up to 64K bytes
long, the maximum length of a segment. (An
attempt to expand a stack beyond 64K bytes
overwrites the beginning of the stack). One
stack is directly addressable at a time; this is
the current stack often referred to simply as
“the” stack. SS contains the base address of
the current stack and SP points to the top of
the stack (TOS). In other words, SP contains
the offset of the top of the stack from the
stack segment’s base address. Note, however,
that the stack’s base address (contained in
SS) is not the “bottom” of the stack.

Instructions that operate on a stack add or
remove one word (2 bytes) at a time. An item
is pushed onto the stack by decrementing SP
by 2 and writing the item at the new TOS. An

2-5

item is popped off the stack by copying it
from TOS and incrementing SP by 2. In
other words, the stack grows down in
memory toward its base address. Stack oper-
ations never move items on the stack, nor do
they erase them. The top of the stack changes
only as a result of updating the stack pointer.

ADDRESSING MODES

Instructions in the 8088 usually perform
operations on one or two source operands,
with the result overwriting one of the oper-
ands. The first operand of a two-operand
instruction can be usually either a register or
a memory location; the second operand can
be either a register or a constant within the
instruction. (The terms first and second oper-
and are used to distinguish the operands only
— their use does not imply directionality for
data transfers). Typical formats for two-
operand instructions are shown in Figure 2-4.

Single-operand instructions generally allow
either a register or a memory location to
serve as the operand. Figure 2-4 also shows a
typical one-operand format. Virtually all
8088 operators may specify 8- or 16-bit
operands.

Memory Operands

An instruction may address an operand resid-
ing in memory in one of the following ways,
as determined by the “mod” and “r/m” field
in the instruction (Fig. 2-5):

DIRECT ADDRESSING — 16-bit offset address
contained in the instruction.

INDIRECT ADDRESSING — optionally with
an 8- or 16-bit displacement contained in the
instruction:

1) through a base register (BP or BX)

2) through an index register (SI or DI)

3) through the sum of a base register and an
index register

ARCHITECTURE AND INSTRUCTIONS

TWO OPERAND FORMAT, SECOND OPERAND IS REGISTER

[_oo1_'|:sEG_]:11cz| [OoPCODE D W] [MoD [REG [RIM |
(optional)

[__oispio —] [__oiseHi]
(optional) - (optional)

TWO OPERAND FORMAT, SECOND OPERAND IS CONSTANT

[[oo1] sec [110 | [opcobE [S[W] [MOD [OPCODE [RIM]
(optional)

[Z_ospio 7] [C”_oseHi] [patato |
" (optional) (optional)

[__oatati _]
(optional)

ONE OPERAND FORMAT

[[001 [SEG T 110 | [opcobe [w] [mobJoPCODE [R/M]
optlonal

C_oseic —7] [__oseh__]
(optional) (optional)

FOR DEFINITION OF MOD AND R/M FIELDS, SEE FIGURE 2-5.
OTHER BIT FIELDS:

W =0: 8-BIT OPERAND(S)
1:16-BIT OPERAND(S)

D =0: DESTINATION IS FIRST OPERAND
1: DESTINATION IS SECOND OPERAND

S =0: DATA=DATAHI, DATALO APPLIES IF
1: DATA = DATA-LO SIGN EXTENDED W =1

SEG: SEGMENT REG REGISTER

00 ES 8-BIT 16-BIT

01 CS REG: (W=0) (W=1)

10 SS

11 DS 000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH Si
111 BH DI

Figure 2-4. Defining Bits in Instructions with One and Two Operands

2-6

ARCHITECTURE AND INSTRUCTIONS

FIRST OPERAND CHOICE DEPENDS ON ADDRESSING MODE:

FIRST OPERAND IN MEMORY

FIRST OPERAND

INDIRECT ADDRESSING DIRECT ADDRESSING IN.REGISTER
00* : DISP =0 MOD =00
MOD =01 :DISP =DISP-LO SIGN AND MOD = 11
EXTENDED o R/M =110
10 :DISP = DISP-HI, DISP-L
OPERAND EFFECTIVE REGISTER
OPERAND ADDRESS = R/M: 8-BIT 16-BIT
R/M; | EFFECTIVE ADDRESS DISP-HI, DISP-LO (W =0) (W=1)
000 | (BX) + (Sl) + DISP 000 AL AX
001 | (BX) + (Dl) + DISP 001 CL CX
010 | (BP) + (SI) + DISP 010 DL DX
011 | (BP) + (DI) + DISP 011 BL BX
100 | (SI) + DISP 100 AH SP
101 | (DI) + DISP 101 CH BP
110 | (BP) + DISP 110 DH Sl
111 | (BX) + DISP 111 BH DI
“Where () means ‘‘contents of”
*Exception—direct addressing mode
Figure 2-5. Determining First Operand
DATA DATA MEMORY
STRUCTURE , STACK
WITHOUT BASE WITH BASE
SIMPLE
VARIABLE DIRECT BX + OFFSET BP + OFFSET
Sl BX + SI BP + Si
ARRAYS DI BX + DI BP + DI
ARRAYS Sl + OFFSET BX + Sl + OFFSET BP + SI + OFFSET
OF RECORDS DI + OFFSET BX + DI + OFFSET BP + DI + OFFSET
Figure 2-6. Effective Addresses Used with Different Data Structures
DEFAULT ALTERNATE
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT LOGICAL ADDRESS
BASE BASE
Instruction Fetch CS NONE IP
Stack Operation SS NONE SP
String Source DS CS,ES,SS Sl
String Destination ES NONE DI
BP Used As Base Register SS CS,DS,ES Effective Address
General Data Read/Write DS CS,ES,SS Effective Address
Figure 2-7. 8088 Address Components

2-7

ARCHITECTURE AND INSTRUCTIONS

Register Operands
An instruction may address an operand resid-
ing in one of the general registers or in one of

the pointer or index registers. Fig. 2-5 shows’

the register selection as determined by the
“r/m” field (first operand) or the “reg” field
(second operand) in the instruction.

Immediate Operands

In general, one of the two operands of a two-
operand instruction can be “immediate” data
contained within the instruction. These oper-
ands are represented in 2’s-complement form
and may be 8-bits or 16-bits in length.

Addressing Mode Usage

The addressing modes were designed to per-
mit efficient implementation of high-level
language features. For example, a simple var-
iable is accessed with the direct mode,
whereas an array element in a based record
(at a memory address pointed to by some
other base variable) may be accessed within
the indirect-through-BX-plus-SI-plus-offset
mode (where BX points to start-of-record,
offset points to the start of the array within
the record, and index register SI contains the
index into the array).

The addressing modes involving the BP base
register allow accessing data in the stack
segment instead of in the data segment. Rec-
ursive procedures and block-structured langu-
ages frequently store data in the stack.
Address modes for accessing data elements
use effective addresses shown in Fig. 2-6.

Addressing Summary

Fig. 2-7 summarizes the address components
that are combined to generate memory
addresses. The Default segment base is the
segment register automatically chosen by the
8088 for the corresponding type of memory
reference. The Alternate segment base may
replace the Default segment if a special “seg-
ment override” prefix precedes the instruction.
The Logical address is automatically added
to the chosen segment register to form the

memory address. The 8088 Assembly lan-
guage simplifies the task of selecting the
desired addressing modes for use with basic
8088 instruction types. 4

Dedicated and Reserved Memory Locations
Two areas in extreme low and high memory
are dedicated to specific processor functions
or are reserved by Intel Corporation for use
by Intel hardware and software products. As
shown in Figure 2-8, the locations are: O0H
through 7FH (128 ' bytes) and FFFFOH
through FFFFFH (16 bytes). These areas are
used for interrupt and system reset process-
ing. iIAPX 88 systems should not use these
areas for any other purpose. Doing so may
make these systems incompatible with future
Intel products.

FFFFFH
RESERVED
FFFFCH
FFFFBH
DEDICATED
FFFFOH
FFFEFH
3 OPEN $
80H
7FH
RESERVED
14H
, 13H
DEDICATED
OH
MEMORY

Figure 2-8. Reserved and Dedicated Memory
Locations

ARCHITECTURE AND INSTRUCTIONS

The interrupt pointer (or interrupt vector) to service interrupts associated with that
table (Fig. 2-9) is the link between an inter- code. The interrupt pointer table occupies up
rupt type code and the procedure designated to 1K bytes of low memory. There may be up
3FFH
i TYPE255POINTER: __|
(AVAILABLE)
3FCH
AVAILABLE 1 T
INTERRUPT
POINTERS
(224)
| TYPE33POINTE]
(AVAILA LE)
084H
| TYPE32POINTER: __|
(AVAILABLE)
080H
07FH
| TYPE31POINTER: __|
(RESERVED)
RESERVED
INTERRUPT N .
POINTERS j 1 (
(27)
| TYPE5POINTER: __|
(RESERVED)
014H
TYPE 0 INTER: __|
- FLOW
010H
- 3 POINTER
1-BYTE INT INSTRUCTION
00CH
DEDICATED
INTERRUPT | TYPE2POINTER]
POINTERS NON-MASKABLE
(5) 008H
TYPE 1 POINTER]
— SINGLE-STEP
004H
[TE‘IDVEIBE(E)&DI%TOEF? —] S iS B_ASE_D?_F}_ES.’S_ —]
000H IP OFFSET
l«e——16BITS——|

Figure 2-9. Interrupt Vector Table in Memory

2-9

ARCHITECTURE AND INSTRUCTIONS

to 256 4-byte entries in the table, one for each
interrupt type that can occur in the system.
Each entry is a doubleword pointer (4 bytes)
containing the address of the procedure. The
higher-addressed word of the pointer con-
tains the base address of the segment
containing the procedure. The lower-
addressed word contains the procedure’s
offset from the beginning of the segment.
Since each entry is four bytes long, the CPU
can calculate the location of the correct entry
for a given interrupt type by simply multiply-
ing (type*4).

Memory location FFFFOH, sixteen bytes

fraom the ahenlute ton of the RORR’c addrece

1XULIl WL QUSUIUIL tUP Ul Uil GUuGo 5 auluivss

range is the first location from which the
8088 fetches an instruction following a sys-
tem RESET (the activation of the RESET
pin on the 8088 CPU chip, usually at the time
system is powered up). This memory location
usually contains a jump (JMP) instruction to
the actual beginning of the system program
somewhere else in memory.

ORGANIZATION OF THE INSTRUCTION
SET

Instructions are described here in six func-
tional groups:

1) Data transfer

2) Arithmetic

3) Logic

4) String manipulation
5) Control transfer

6) Processor control

Each of the first three groups mentioned in
the preceding list is further subdivided into
an array of codes that specify whether the
instruction is to act upon immediate data,
register or memory locations, whether 16-bit
words or 8-bit bytes are to be processed, and
what addressing mode is to be employed. All
of these codes are listed and explained in
detail in this book, but when you are writing
assembly-language programs you do not
have to code each one individually. The con-

2-10

text of your program automatically causes
the assembler to generate the correct code.

There are three general categories of instruc-
tions within each of the three functional
groups mentioned:

1) Register or memory space to or from
register

2) Immediate data to register or memory

3) Accumulator to or from registers, mem-
ory, or ports

The details of the syntax of the 8088 instruc-
tion set are described fully in Intel’s iIAPX 86,
88 assembly language programming manual.

Data Transfer Instructions

Data transfer instructions are divided into
four classes:

1) General purpose

2) Accumulator-specific

3) Address-object

4) Flag '

None affect flag setting except SAHF and
POPF.

General Purpose Transfers

Four general purpose data transfer opera-
tions are provided and may be applied to
most operands, though there are specific
exceptions. The general purpose transfers
(except XCHG) are the only operations
which allow a segment register as an operand.

MOY performs a byte or word transfer from
the source operand to the destination operand.

PUSH decrements the SP register by two
and then transfers a word from the source
operand to the stack element currently
addressed by SP.

POP transfers a word operand from the
stack element addressed by the SP register to
the destination operand and then increments
SP by 2.

XCHG exchanges the byte or word source
operand with the destination operand. The
segment registers may not be operands of
XCHG.

ARCHITECTURE AND INSTRUCTIONS

Accumulator-Specific Transfers
Three accumulator-specific transfer opera-
tions are provided:

IN transfers a byte (or word) from an input
port to the AL register (or AX register for a
word). The port is specified either with an
inline data byte, allowing fixed access to
ports 0 through 255, or with a port number in
the DX register, allowing variable access to
64K input ports.

OUT is similar to IN except that the transfer
is from the accumulator to the output port.

XLAT performs a table lookup byte transla-
tion. The AL register is used as an index into
a 256-byte table whose base is addressed by
the BX register. The byte operand so selected
is transferred to AL.

Address-Object Transfers
Three address-object transfer operations are
provided:

LEA (load effective address) transfers the
offset address of the source operand must be
a memory operand and the destination oper-
and must be a 16-bit general pointer, or
index register.

LDS (load pointer into DS) transfers a
“pointer-object” (i.e., a 32-bit object contain-
ing an offset address and a segment address)
from the source operand (which must be a
memory operand) to a pair of destination
registers. The segment address is transferred
to the DS segment register. The offset
address must be transferred to a 16-bit gen-
eral, pointer, or index register.

LES (load pointer into ES) is similar to LDS
except that the segment address is transferred
to the ES segment register.

Flag Register Transfers
Four flag register transfer operations are
provided:

LAHF (load AH with flags) transfer the flag
registers SF, ZF, AF, PF, and CF (the 8080

flags) into specific bits of the AH register.

SAHF (store AH into flags) transfers specific
bits of the AH register to the flag register, SF,
ZF, AF, PF, and CF.

PUSHF (push flags) decrements the SP reg-
ister by two and transfers all of the flag
registers into specific bits of the stack element
addressed by SP.

POPF (pop flags) transfers specific bits of the
stack element addressed by the SP register to
the flag registers and then increments SP by
two.

Arithmetic Instructions

The 8088 provides the four basic mathemati-
cal operations in a variety of instructions.
Both 8- and 16-bit operations and both
signed and unsigned arithmetic are provided.
Standard twos complement representation of
signed values is used. The addition and sub-
traction operations serve as both signed and
unsigned operations to be made (see Condi-
tional Transfer). Correction operations allow
arithmetic to be performed directly on
packed or unpacked decimal numbers.

Flag Register Settings

Six flag registers are set or cleared by arith-
metic operations to reflect results of the
operation. They generally follow these rules:

CF is set if the operation results in a carry out
of (from addition) or a borrow into (from
subtraction) the high-order bit of the result;
otherwise CF is cleared.

AF is set if the operation results in a carry
out of (from addition) or a borrow into (from
subtraction) the low-order four bits of the
result; otherwise AF is cleared.

ZF is set if the result of the operation is zero;
otherwise ZF is cleared.

SF is set if the high-order bit of the result of
the operation is set; otherwise SF is cleared.

ARCHITECTURE AND INSTRUCTIONS

PF is set if the modulo 2 sum of the low-
order eight bits of the operation is 0 (even
parity); otherwise PF is cleared (odd parity).

OF is set if the operation results in a carry
into the high-order bit of the result but not a
carry out of the high-order bit, or vice versa;
otherwise OF is cleared.

Addition
Five addition operations are provided:

ADD performs an addition of the two source
operands and returns the result to one of the
operands.

ADC (add with carry) performs an addition
of the two source operands, adds one if the
CF flag is found previously set, and returns
the result to one of the operands.

INC (increment) performs an addition of the
source operand and returns the result to the
operand.

AAA (unpacked BCD [ASCII] adjust for
addition) performs a correction of the result
in AL of adding two unpacked decimal ope-
rands, yielding an unpacked decimal sum.

DAA (decimal adjust for addition) performs
a correction of the result in AL of adding two
packed decimal operands, yielding a packed
decimal sum.

Subtraction
Seven subtraction operations are provided:

SUB performs a subtraction of the two
source operands and returns the result to one
of the operands.

SBB (subtract with borrow) performs a sub-
traction of the two source operands, subtracts
one if the CF flag is found previously set, and
returns the result to one of the operands.

DEC (decrement) performs a subtraction of
one from the source operand and returns the
result to the operand.

NEG (negate) performs a subtraction of the
source operand from zero and returns the
result to the operand.

2-12

CMP (compare) performs a subtraction of
the two source operands causing the flags to
be affected but does not return the result.

AAS (unpacked BCD [ASCII] adjust for
subtraction) performs a correction of the
result in AL of subtracting two unpacked
decimal operands, yielding an unpacked
decimal difference.

DAS (decimal adjust for subtraction) per-
forms a correction of the result in AL of
subtracting two packed decimal operands,
yielding a packed decimal difference.

Multiplication
Three multiplication operations are
provided: - :

MUL performs an unsigned multiplication of
the accumulator (AL or AX) and the source
operand, returning a double length result to
the accumulator and ‘its extension (AL and
AH for 8-bit operation, AX and DX for
16-bit operation). CF and OF are set if the
top half of the result is non-zero.

IMUL (integer multiply) is similar to MUL
except that it performs a signed multiplica-
tion. CF and OF are set if the top half of the
result is not the sign-extension of the low half
of the result.

AAM (unpacked BCD [ASCII] adjust for
multiply) performs a correction of the result
in AX of multiplying two unpacked decimal
operands, yielding an unpacked decimal
product. '

Division

Three division operations are provided and
two sign-extension operations to support
signed division:

DIV performs an unsigned division of the
accumulator and its extension (AL and AH
for 8-bit operation, AX and DX for 16-bit
operation) by the source operand and returns
the single length quotient to the accumulator
(AL or AX), and returns the single length
remainder to the accumulator extension (AH

ARCHITECTURE AND INSTRUCTIONS

or DX). The flags are undefined. Division by
zero generates an interrupt of type 0.

IDIV (integer division) is similar to DIV
except that it performs a signed division.

ADD (unpacked BCD [ASCII] adjust for
division) performs a correction of the divi-
dend in' AL before dividing two unpacked
decimal operands, so that the result will yield
an unpacked decimal quotient.

CBW (convert byte to word) performs a sign
extension of AL into AH.

CWD (convert word to double word) per-
forms a sign extension of AX into DX.

LOGIC INSTRUCTIONS

The 8088 provides the basic logic operation
for both 8- and 16-bit operands.
Single-Operand Operations

Three single-operand logical operations are
provided: ~

NOT forms the ones complement of the
source operand and returns the result to the
operand. Flags are not affected.

Shift operations of four varieties are pro-
vided for memory and register operands,
SHL (shift logic left), SHR (shift logic right),
SAL (shift arithmetic left), and SAR (shift
arithmetic right). Single bit shifts, and vari-
able bit shifts with the shift count taken from
the CL register are available. The CF flag
becomes the last bit shifted out; OF is defined
only for shifts with count of 1, and set if the
final sign bit value differs from the previous
value of the sign bit; and PF, SF, and ZF are
set to reflect the result value.

Rotate operation of four varieties are pro-
vided for memory and register operands,
ROL (rotate left), ROR (rotate right), RCL
(rotate through CF left), and RCR (rotate
through CF right). Single bit rotates, and vari-
able bit rotates with the rotate count taken
from the CL register are available. The CF
flag becomes the last bit rotated out; OF is
defined only for shifts with count of 1, and is

2-13

set if the final sign bit value differs from the
previous value of the sign bit.

Two-Operand Operations .

Four two-operand logical operations are
provided. The CF and OF flags are cleared
on all operations; SF, PF, and ZF reflect the
result.

AND performs the bitwise logical conjunc-
tion of the two source operands and returns
the result to one of the operands.

TEST performs the same operations as AND
causing the flags to be affected but does not
return the result.

OR performs the bitwise logical inclusive dis-

junction of the two source operands and

returns the result to one of the operands.

XOR performs the bitwise logical exclusive
disjunction of the two source operands and
returns the result to one of the operands.

STRING MANIPULATION INSTRUCTIONS
One-byte instructions perform various primi-
tive operations for the manipulation of byte
and word strings (sequences of bytes or
words). Any primitive operation can be per-
formed repeatedly in hardware by preceding
its instruction with a repeat prefix. The
single-operation forms may be combined to
form complex string operations with repeti-
tion provided by iteration operations.

Hardware Operation Control

All primitive string operations use the SI reg-
ister to address the source operands, which
are assumed to be in the current data seg-
ment. The DI register addresses the desti-
nation operands, which reside in the current
extra segment. If the DF flag is cleared, the
operand pointers are incremented after each
operation (once for byte operations and twice
for word operations). If the DF flag is set, the
operand pointers are decremented after each
operation. See Processor Control for setting
and clearing DF.

ARCHITECTURE AND INSTRUCTIONS

Any of the primitive string instructions may
be preceded with a one-byte prefix indicating
that the operation is to be repeated until the
operation count in CX is satisfied. The test
for completion is made prior to each repeti-
tion of the operation. Thus, an initial
operation count of zero will cause zero exe-
cutions of the primitive operation.

The repeat prefix byte also designates a value
to compare with ZF flag. If the primitive
operation is one which affects the ZF flag,
and the ZF flag is unequal to the designated
value after any execution of the primitive
operation, the repetition is terminated. This
permits the scan operation to serve as a scan-
while or a scan-until.

During the execution of a repeated primitive
operation the operand pointer registers (SI
and DI) and the- operation count register
(CX) are updated after each repetition,
whereas the instruction pointer will retain the
offset address of the repeat prefix byte
(assuming it immediately precedes the string
operation instruction). Thus, an interrupted
repeated operation will be correctly resumed
when control returns from the interrupted
task. :

You should avoid using the two other prefix
bytes with a repeat-prefixed string instruc-
tion. One overrides the default segment
addressing for the SI operand and one locks
the bus to prohibit access by other bus
masters. Execution of the repeated string
operation will not resume properly following
an interrupt if more than one prefix is present
preceding the string primitive. Execution will
resume one byte before the primitive (pre-
sumably where the repeat prefix resides), thus
ignoring the additional prefixes.

Primitive String ‘Opé;'rations
Five primitive string operations are provided:
MOYVS transfers a byte or word operand

from the source operand to the destination
operand. As a repeated operation this moves

2-14

a string from one location in memory to
another.

CMPS subtracts the destination byte or word
operand from the source operand and affects
the flags but does not return the result. As a
repeated operation this compares two strings.
With the appropriate repeat prefix it is pos-
sible to determine after which string element
the two strings become. unequal, thereby
establishing an ordering between the strings.

SCAS subtracts the destination byte or word
operand from AL (or AX) and affects the
flags but does not return the result. As a
repeated operation this scans for the occur-
rence of, or departure from a given value in
the string.

LODS transfers a- byte or word operand
from the source operand to AL (or AX). This
operation ordinarily would not be repeated.

STOS transfers a byte or word operand from
AL (or AX) to the destination operand. As a
repeated operation this fills a string with a
given value. :

In all cases above, the source operand is
addressed by SI and the destination operand
is addressed by DI.

Software Operation Control

The repeat prefix provides for rapid iteration
in a hardware-repeated string operation. The
iteration control operations provide this
same control for implementing software
loops to perform complex string operations.
These iteration operations provide the same
operation count update, operation comple-
tion test, and ZF flag tests that the repeat
prefix provides.

By combining the primitive string operations
and iteration control operations with other
operations, it is possible to build sophisti-
cated yet efficient string manipulation
routines. One instruction that is particularly
useful in this context is XLAT; it permits a
byte fetched from one string to be translated

ARCHITECTURE AND INSTRUCTIONS

before being stored in a second string, or
before being operated upon in some other
fashion. The translation is performed by
using the value in the AL register as an index
into a table pointed at by the BX register.
The translated value obtained from the table
then replaces the value initially in the AL
register.

Here is an example problem solved by use of
primitive string operations and iteration con-
trol operations to implement a complex
string operation: An input driver must trans-
late a buffer of EBCDIC characters into
ASCII, and transfer characters until one of
several EBCDIC control characters is encoun-
tered. The transferred ASCII string is to be
terminated with an EOT character.

To initialize the translation sequence, SI
points to the beginning of the EBCDIC
buffer, DI points to the beginning of the
receiving ASCII buffer, BX points to an
EBCDIC-to-ASCII translation table, and
CX contains the length of the EBCDIC
buffer (possibly empty). The translation table
contains the ASCII equivalent for each
EBCDIC character, perhaps with ASCII
NUL:s for illegal characters. The EOT code is
placed into the table corresponding to
EBCDIC stop characters. The 8088 instruc-
tion sequence to implement this example is
the following:

Next:

JCXA Empty ;skip if input buffer empty
LODS Ebcbuf ;fetch next EBCDIC character
XLAT Table ;translate it to ASCII

CMP AL, EOT ;test for the EOT

STOS Ascbuf
LOOPNE Next

;transfer ASCII character
;continue if not EOT

Empty:

The body of this loop requires seven bytes of
code. '

CONTROL TRANSFER INSTRUCTIONS
Four classes of control transfer operations

may be distinguished:

1) calls, jumps, and returns;
2) conditional transfers;

3) iteration control; and

4) interrupts.

All control transfer operations cause the pro-
gram execution to continue at some new
location in memory, possibly in a new code
segment.

Calls, Jumps, and Returns

Two basic varieties of call jumps, and returns
are provided — those which transfer control
within the current code segment, and those
which transfer control to an arbitrary code
segment, which then becomes the current
code segment. Both direct and indirect
transfers are supported; indirect transfers

make use of the standard addressing modes.

The three transfer operations are described
below:

CALL pushes the offset address of the next
instruction onto the stack (in the case of an
inter-segment transfer the CS segment regis-
ter is pushed first) and then transfers control
to the target operand.

JMP transfers control to the target operand.

RET transfers control to the return address
saved by a previous CALL operation, and
optionally may adjust the SP register to dis-
card stacked parameters.

Intra-segment direct calls and jumps specify a
self-relative direct replacement, thus allowing
position independent code. A short jump
instruction (optional use) transfers +128
bytes from the current instruction for code
compaction.

Conditional Jumps

The conditional transfers of control perform
a jump continuing upon various Boolean
functions of the flag registers. The destina-
tion must be within 256-bytes from the
instruction.

ARCHITECTURE AND INSTRUCTIONS

Iteration Control

The iteration control transfer operations per-
form leading- and trailing-decision loop con-
trol. The destination of iteration control
transfers must be within & 256-bytes from the
instruction. These operations are particularly
useful with string manipulation operations.

There are four iteration control transfer
operations provided:

LOOP decrements the CX ("count”) register
by one and transfers if CX is not zero.

LOOPZ (also called. LOOPE) decrements the
CX register by one and transfers if CX is not
zero and the ZF flag is set (loop while zero or
loop while equal).

LOOPNZ (also called LOOPNE) decre-
ments the CX register by one and transfers if
CX is not zero and the ZF flag is cleared
(loop while not zero or loop while not equal).

JCXZ transfers if the CX register is zero.

Interrupts

Program execution control may be trans-
ferred by means of operations similar in
effect to that of external interrupts. All inter-
rupts transfer by pushing the flag registers
onto the stack (as in PUSHF), and perform
an indirect call (of the inter-segment variety)
through an interrupt vector table located at
absolute locations 0 through 3FFH. This vec-
tor contains a four-byte element for each of
up to 256 different interrupt types.

There are three interrupt transfer operations
provided:

INT pushes the flag registers (as in PUSHF),
clears the TF and IF flags, and transfers con-
trol with an indirect call through any one of
the 256 vector elements. A one-byte form of
this instruction is available for interrupt
type 3.

INTO pushes the flag registers (as in
PUSHF), clears the TF and IF flags, and
transfers control with an indirect call through
vector element 4 if the OF flag is set (trap on

2-16

overflow). If the OF flag is cleared no opera-
tion takes place.

IRET transfers control to the return address
saved by a previous interrupt operation and
restores the saved flag register (as in POPF).

See Chapter 3 for further details on interrupt
operations.

PROCESSOR CONTROL INSTRUCTIONS
Various instructions and mechanisms control
the processor and' its interaction with its
environment.

Flag Operations
Seven operations provided operate directly
on individual flag registers:

CLC clears the CF flag.
CMC complements the CF flag.
STC sets the CF flag.

CLD clears the DF flag, causing the string
operations to auto-increment the operand
pointer.

CLI clears the IF flag, disabling external
interrupts (except for the non-maskable
external interrupt.

STI sets the IF flag, enabling external
interrupts after the execution of the next
instruction.

Processor Halt

The HLT instruction causes the 8088 proces-
sor halt. The halt state is cleared by RESET
or an enabled external interrupt.

Processor Wait

The WAIT instruction causes the processor
to enter a wait state if the signal on its TEST
pin is not asserted. The wait state may be
interrupted by an enabled external interrupt.
When this occurs the saved code location is
that of the WAIT instruction, so that upon
return from the interrupting task the wait
state is reentered. The wait state is asserted.
Execution resumes without allowing external
interrupts until after the execution of the next

ARCHITECTURE AND INSTRUCTIONS

instruction. This instruction allows the pro-
cessor 'to synchronize itself with external
hardware.

Processor Escape

The ESC instruction provides a mechanism
by which other processors (such as the
Numeric Processor Extension) may receive
their instructions from the 8088 instruction
stream and make use of the 8088 addressing
modes. The 8088 processor does no opera-
tion for the ESC instruction other than to
access a memory operand.

Bus Lock

A special one-byte lock prefix may precede
any instruction to cause the processor to
assert its bus-lock signal for the duration of
the operation caused by that instruction. This
has use in multiprocessing applications.

Single Step
When the TF flag register is set, the processor
generates a type | interrupt after execution of
each instruction. During interrupt transfer
sequences caused by any type of interrupt,
the TF flag is cleared after the pushflags step
of the interrupt sequence. No instructions are
provided for setting or

clearing TF directly.

Rather, the flag register image saved on the
stack by a previous interrupt operation must
be modified, so the subsequent interrupt
return operation (IRET) restores TF set. This
allows a diagnostic task to single-step through
a task under test, while still executing nor-
mally itself.

If the single-stepped instruction itself clears
the TF flag, the type 1 interrupt will still
occur upon completion of the single-stepped
instruction. If the single-stepped instruction
generates an interrupt or if an enabled exter-
nal interrupt occurs prior to the completion
of the single-stepped instruction, the type 1
interrupt sequence will occur after the inter-
rupt sequence of the generated or external
interrupt; but before the first instruction of
the interrupt service routine is executed.

INSTRUCTION TIMINGS

Instruction timings are included with the
detailed instruction set pages at the back of
this chapter. They are provided as the
number of clock periods required to execute
a particular form (register-to-register,
immediate-to-memory, etc.) of the instruc-
tion. If a system is running with a 5 MHz
maximum clock, the maximum clock period
is 200 ns. Where memory operands are used,
“+EA” denotes a variable number of addi-
tional clock periods needed to calculate the
operand’s effective address. Fig. 2-10 lists all
effective address calculation times.

For control transfer instructions, the timings
given include any additional clocks required
to reinitialize the instruction queue as well
as the time required to fetch the target
instruction.

Note that four clocks are required for each
memory reference. Therefore, the execution
time of memory reference instructions will
depend on the number of byte transfers.

Several additional factors can increase actual
execution time over the figures shown in the
instruction set reference pages. The time pro-
vided assumes that the instruction has already

EA COMPONENTS CLOCKS*
Displacement Only 6
Base or Index Only (BX,BP,SI,DI) 5
Displacement

+ 9
Base or Index (BX,BP,SI,DI)
Base BP + DI, BX+ Sl 7
+ .
Index BP +SI, BX+DlI 8
Displacement BP + DI+ DISP 1
+ BX + St+ DISP
Base
+ BP + Sl + DISP 12
Index BX + DI+ DISP

*Add 2 clocks for segment override

Figure 2-10. Effective Address Calculation Time

ARCHITECTURE AND INSTRUCTIONS

been prefetched and that it is waiting in the
instruction queue, an assumption that is valid
under most, but not all operating conditions.
A series of fast executing (fewer than two
clocks per opcode byte) instructions can
drain the queue and increase execution time.

Execution time also is slightly impacted by
the interaction of the CPU’s internal instruc-
tion execution unit (EU) and BU’s interface
unit (BIU) when memory operands must be
read or written. If the EU needs access to
memory, it may have to wait for up to one
clock if the BIU has already started an
instruction fetch bus cycle. The EU can
detect the need for a memory operand and
post a bus request far enough in advance of
its need for this operand to avoid waiting a
full 4-clock bus cycle. Of course, the EU does
not have to wait if the instruction queue be-
tween the BIU and EU is full, because the BIU
is idle. (Note: 8088 queue contains 4 bytes.)

With typical instruction mixes, the time actu-
ally required to execute a sequence of
instructions will typically be within 5-10% of
the sum of the individual timings given in the
instruction set sequence. Cases can be con-
structed, however, in which execution time
may be much higher than the sum of the
figures provided. The execution time for a
given sequence of instructions, however, is
always repeatable, assuming comparable ex-
ternal conditions (interrupts, coprocessor
activity, etc.) If the execution time for a given
series of instructions must be determined
exactly, the instructions should be run on an
actual system hardware implementation.

ASSEMBLY LANGUAGE PROGRAMMING!'"!

This section, while not meant to be a com-
pendium of all features and rules of ASM-86
(the Intel assembler for 8088 instructions)
covered in detail by the Intel iAPX 86,88
Assembly Language Reference Manual, pre-
sents most of the ASM-86 features in a form

[1] Edited and reprinted with permission of Hayden Book Co. from
The 8086 Primer, by Stephen P. Morse. Copyright 1980.

2-18

to enable you to write meaningful programs.
Not covered are many advanced ASM-86
features; attention is focused on underlying
concepts of the language.

Object Code

Let’s first consider a simple program that
reads in word values from input port 5,
increments each value read, and writes the
results to output port 2. The program is as
follows:

Memory Address Memory Contents

(Hexadecimal) (Binary) Comments
00000 11100101 read word into AX...
00001 00000101 ...from input port 5
00002 01000000 increment AX
00003 11100111 write word from AX...
00004 00000010 ...to output port 2
00005 11101011 repeat by jumping...
00006 11111001 ...back seven bytes
00007

The first two columns specify the address and
contents of each relevant memory location
and, as such, constitute the only form of the
program comprehensible to the processor.
This is called object code, and the language
of I’s and 0’s in which the object code is writ-
ten is called machine language. Once we have
the program in object code form, we can
store it in memory and then have the 8088
execute it.

Source Code

Writing a program in 1’s and 0’s is tedious
and repetitive, a task that computers do well.
So, instead of writing the program in
machine language, we write the program in a
language more familiar to us and then use a
computer to translate it into the 8088’s lan-
guage. A program written in this more
familiar language is called source code, and
the computer program that translates source
code into object code is called a translator.
(Fig. 2-11)

There are two kinds of translator languages
for writing source code: assembly languages
and high-level languages described below and
illustrated in Fig. 2-12

ARCHITECTURE AND INSTRUCTIONS

The process of translation might involve per-
forming some additional activities before the
output is truly machine code. These activities,
like relocation and linkage, are part of the
translation process. Throughout this text,
references to translation (assembling, compil-
ing) imply all necessary activities to produce
object code.

A program written in assembly language is a
symbolic representation of the machine-
language program.

The relation between the assembly-language
program statements and the resulting object
code is usually obvious while the relation
between high-level language statements and
the resulting object code is often not obvious.
Assembly language gives you complete con-
trol over the resulting object code and
thereby allows you to generate very efficient
object code (prov1dmg you’re a very efficient
programmer).

A high-level language compiler frees you
from thinking about the object code and lets

- SOURCE OBJECT
QODE - —| TRANSLATOR | 2B4EC
(MACHINE
LANGUAGE)

Figure 2-11. Translation Process

SOURCE QBJECT
CODE~ —| ASSEMBLER |—QB1E(
ASSEMBLY (MACHINE
ANGUAGE) LANGUAGE)
SQURCE OBJECT
SQURCE —»{ comPILER | > QBJES
(HIGH-LEVEL (MACHINE
LANGUAGE) LANGUAGE)

Figure 2-12. Assemblers and Compilers

you concentrate on the task you are pro-
gramming. The compiler may generate less
efficient object code, but good compilers can
sometimes generate more efficient object
code than you could have written in assembly
language.

SYMBOLIC NAMES

The primary advantage of using assembly
language instead of machine language is the
ability to use symbolic names. Let’s illustrate
this point using assembly-language source
code:

CYCLE: .

IN AX,5 ;read word from port 5 into AX
INC AX ;increment AX

ouT 2,AX ;write result to port 2

JMP CYCLE ;keep repeating

The above program is simpler to read and
understand because it uses symbolic names
instead of numbers as much as possible. The
opcodes of the four instructions are 1110010-,
01000---, 1110011-, and 11101011 in the
object code. They are IN, INC, OUT, and
JMP in the assembly-language source code.
Symbolic names for opcodes are called
instruction mnemonics. The symbolic opcode
names used throughout this book are the
instruction mnemonics of ASM-86 that gen-
erate correspondmg bit patterns for object
code.

Register Names

Besides the opcode fields, there are other
fields in the object code (see above example).
The contents of these fields must be specified
in the assembly-language source code, so the
assembler can generate the appropriate bit
patterns in the object code.

For example, the INC instruction has a 3-bit
reg field, indicating which register is to be
incremented when the instruction is executed.
The contents of this reg field are specified in
the source code by indicating the symbolic
name of the register, as in “INC AX.”

ARCHITECTURE AND INSTRUCTIONS

The symbolic register names used in ASM-86
are the names that are used for the reglsters
throughout this book —

AX BL - CH 8]}
BX CL DH CS
CX DL BP DS
DH AH SP ES
AL BH Sl SS
Input/Output

Both the IN and OUT instructions have a
1-bit w field and an 8-bit port number field.
The port numbers are simply specified in the
source code by “IN AX,5” and “OUT 2,AX”.
The w field is specified more subtly by the
presence of the AX in “IN AX,5” and “OUT
2,AX”. Input/output always uses AX when
words are involved and AL when bytes are
involved. So the appearance of AX instead of
AL in the IN and OUT instructions indicates
that the w field is a 1. (The AMS-86 conven-
tion is to place the destination before the
source; hence AX precedes port number on
the IN instruction and follows it on the OUT
1nstruct10n)

Jump Cycle : :
Another example of a symbolic name in the
above program is the label CYCLE on the IN
instruction. This permits the JMP instruction
to refer to the location of the IN instruction
by name as in “JUMP CYCLE.” The
assembler now has enough information to

determine that this is a jump backwards of
seven bytes and can generate a -7 in the
appropriate field of the JMP instruction.

A Complete Program

In the previous section, we used a fragment
of an ASM-86 program. To make that frag-
ment into a complete program, we need some
additional statements (see below).

This entire program will reside in a single
segment in the 8088 memory. During the
assembly process, we don’t know (nor do we
care) where that segment will be located; that
decision will be made prior to loading the
segment into memory.

During the assembly process, we refer to the
starting address of the segment by the sym-
bolic name IN_AND OUT. Lines 1 and 7
delimit the extent of the segment; line 1
introduces the segment names IN_AND__
OUT, and line 7 marks the end of the seg-
ment (ENDS).

Line 8 flags the end of the source program,
thereby telling the assembler that there are no
more lines to assemble. Furthermore; it indi-
cates that when the program is executed, it
should start with the instruction labeled
CYCLE (line 3).

The object code generated by the assembler
specifies the contents of all relevant memory
locations plus this:starting address.

SEGMENT
ASSUME
IN

INC

ouT
JMP
ENDS
END

IN.AND.OUT -

CYCLE:

AN_.AND_OUT

©NOOAWN A

k - ;start of segment
INNAND.OUT

CS: :that’s what’s in CS
AX,5
AX
2,AX
CYCLE

;end of segment
CYCLE :end of assembly

2-20

ARCHITECTURE AND INSTRUCTIONS

The ASSUME statement on line 2 complies
with the following rule:

at the very beginning of any segment contain-
ing code, we must tell the assembler what to
assume is in the CS register when that code is
executed. This will always be the starting
address, without the last four “0” bits of the
segment, so we must include the statement:

ASSUME CS: Name_of_segment

ASM-86 Program Structure

Now consider a more detailed ASM-86 pro-
gram (shown below) to understand the
structure of such programs in general. This
program will be referred to as the “sample
program” throughout this chapter.

Line | introduces a segment somewhere in
the 8088 memory (we don’t care where) and
gives it the name MY_DATA.

Line 3 ends the segment. The only thing in

the segment is SUM, defined to be a byte
(DB) of data.

The question mark on line 2 indicates that
the generated object code needs to reserve a
place in memory for SUM, but it need not
specify any particular initial contents for that
location. MY_DATA is apparently going to
be used as a data segment.

Lines 4-18 define another segment with the
name MY_CODE. An examination of lines 7
to 17 reveals that the segment contains
instructions for use as a code segment.

Line 19 flags the end of the source program
and indicates that when the program is exe-
cuted, execution should start with the instruc-
tion labeled GO (line 7).

Assumption About DS

The ASSUME statement on line 5 tells the
assembler what it should assume will be in
the CS and DS register when the segment of
code is executed.

1. MY_DATA _ SEGMENT ;data segment
2. SUM DB ? :reserve a byte for SUM
3. MY_DATA ENDS
4. MY_CODE SEGMENT ;code segment
5. ASSUME CS:MY_CODE, DS:MY_ DATA
;contents of CS and DS
6. PORT_VAL EQU 3 ;symbolic name for port number
7. GO: - MOV AX,MY_DATA sinitialize DS to MY_ DATA
8. MOV DS,AX
9. MOV SUM,0 ;clear sum
10. CYCLE: CMP SUM,100 ;if SUM exceeds 100
11. JNA NOT_DONE
12. MOV AL,SUM ;...then output SUM to port 3
13. ouT PORT_ VAL,AL
14. HLT ;...and stop execution
15. NOT_DONE: IN AL,PORT_VAL ;otherwise add next input
16. ADD SUM,AL
17. JMP CYCLE ;and repeat the test
18. MY_CODE ENDS
19. END GO ;this is the end of the assembly

ARCHITECTURE AND INSTRUCTIONS

The need for an assumption about DS is that
some assembly-language instructions in the
code segment access data directly, particu-
larly, the byte SUM. The assembler must
generate machine-language instructions that
address SUM using the direct addressing
mode. These generated instructions specify
the offset of SUM and some segment register,
typically DS, containing the starting address
of the segment (namely MY DATA) contain-
ing SUM.

The assembler needs to know which segment
registers (if any) will contain MY_DATA’s
starting address, at the time these instructions
are executed. With this information, the
assembler can determine if a segment-over-
riding prefix is required on these instructions,
and if so, which segment register should be
specified by the prefix. It would be the case if,
for example, MY_DATA'’s starting address
were contained only in ES. Furthermore, if
none of the registers will contain MY_
DATA’s starting address at instruction-
execution time, the assembler knows that it
cannot generate any instructions capable of
accessing SUM and will be‘able to report this
error at instruction-assembly time.

SUMMARY

So, why assume some segment register would
contain MY_DATA’s starting address at
instruction-execution time? So that SUM can
be accessed. Why is DS used? Because no
segment-overriding prefix is necessary. Make
sure this assumption is satisfied by executing
certain instructions (lines 7 and 8) prior to the
first access to SUM.

PORTS 3 AND 4

Line 6 specifies that PORT_VAL is equiva-
lent to the constant 3. This permits PORT.__
VAL to be used in place of 3 on succeeding
lines. This makes PORT_VAL a symbolic
name for port 3 and refers to PORT_VAL
whenever port 3 is wanted. Now if we decide

2-22

to rewrite the program to use port 4 instead,
we need make only one change: line 6 is
changed to:

PORT_VAL EQU 4

The - instructions on lines 7 through 17 will
keep adding inputs from port 3 until the sum
exceeds 100, output that sum to port 3, then
halt.- This is accomplished as follows: The
instruction on line 7 puts — the 16 most-
significant bits of — the starting address of
segment MY_DATA into register AX; on line
8 this value is moved from AX to DS. This
makes SUM accessible in succeedlng in-
structions.

The instruction on line 9 initializes SUM to
0. Observe that on lines 7, 8, and 9, the desti-
nations, such as SUM on line 9, are always
written before the sources, as 0 on line 9.

Line 10 compares (CMP) the value in SUM
to 100 and sets processor flags, indicating
comparison results.

Line 11 tests the flags and jumps, if SUM was
not above 100 (JNA). The target of the jump

the inctrniictinon lahalad NnT n(\T\TE (]unn

is the instruction labeled N NE &
15). If the jump on line 11 is not taken (SUM
> 100), the SUM is moved into AL (line 12);
the contents of AL is sent to output port 3
(line 13), and the processor halts (line 14).

If the jump on line 11 is taken (SUM < 100),
the value on input port 3 is sent to AL (line
15), added to SUM (line 16), and the jump on
line 17 transfers control back to line 10.

General Conclusions

Now, from the above example, what can be
noticed about the structure of an ASM-86
program? It consists of one or more segment
blocks followed by an END statement. Each
segment block starts with a SEGMENT
statement and ends with an ENDS (end-of-
segment) statement. Between the SEGMENT
and ENDS statements is a sequence of other

ARCHITECTURE AND INSTRUCTIONS

statements. Each statement normally occu-
pies one line. If succeeding lines are needed,
they start with “&”. The structure of an
ASM-86 program is:

NAME1 SEGMENT
statement

statement
NAME1 ENDS
NAME2 SEGMENT

statement

statement
NAME2 ENDS

END

The programs presented here all display a
r (=4 r r o

consistent tabular pattern.

Such tabulation is not part of the program
structure; it is optional to the assembler, but
highly recommended to make programs eas-
ier to read and understand.

In the untabulated version of the INAND__

OUT program below, the assembler would
assemble faster, but the program would be
much less-comprehensible to us.

Tokens

Before examining the kinds of statements
from which ASM-86 programs are built, we
must become familiar with the building
blocks of statements. Statements are com-
posed of such things as identifiers, reserved
words, delimiters, constants, and comments.
These building blocks, sometimes called zok-
ens, are described below.

IDENTIFIERS

Identifiers are names that you, the pro-
grammer, are free to make up. Identifiers in
the sample program are SUM, CYCLE, and
PORT _VAL. An identifier is a sequence of
letters, numbers, and underscore characters
(—), but may not start with a number. An
identifier may be up to 31 characters long,
which means the length is practically unlim-
ited. Examples of identifiers are:

X

GAMMA
JACKS5

THIS _NODE
THISNODE

The last two examples are indeed different
identifiers.

IN.OUT_OUT SEGMENT
ASSUME CS:IN.AND_OUT
CYCLE:IN AX,5

INC AX

OUT2,AX

JUMP CYCLE

IN AND OUT ENDS

END CYCLE

;start of segment
;that’'s what's in CS

;end of segment
;end of assembly

2-23

ARCHITECTURE AND INSTRUCTIONS

RESERVED WORDS

Reserved words, look like identifiers, but
they have a special meaning in the language,
and you must not use them as identifier
names (Fig. 2-14). The sample program uses
reserved words. like SEGMENT, MOV,
EQU, and AL. Thus, it would be perfectly
acceptable for us to make up a name like
EQUAL as in:

EQUAL DB

but it would be improper for us to write:

EQU DB

?
Refer to pg. 2-43, Fig. 2-14 for complete list
of ASM-86 Reserved Words.

DELIMITERS

Delimiters are non-alphanumeric characters
that have special meaning in the 8088 assem-
bly language. In the sample program, we saw
such delimiters as : and ;. In this chapter we
will use many of the delimiters. For a com-
plete list of delimiters in ASM-86, see Fig.
2-13.

2-24

CONSTANTS

Constants are fixed values appearing in
ASM-86 programs. In the sample program
there are constants 0, 3, and 100. These are
whole-number constants. The assembly lan-
guage also allows for string constants.

A whole-number constant is any non-
fractional number between 0 and 65535 (216
— 1). It is normally written as a decimal
number, but can also be written in binary,
ending with a B, octal, ‘ending with a Q, or
hexadecimal, ending with an H.

To avoid confusion with identifiers, a hexa-
decimal constant must start with a numeric
digit; a leading zero would suffice. Examples
of whole-number constants are 15, 1010B,
27Q, 3A0H, and 0BFA3H.

I ; — ?
¢ + [
S

Figure 2-13. Delimiters in ASM-86

ARCHITECTURE AND INSTRUCTIONS

String Constant

A string constant is one or two characters
enclosed with apostrophes. Strings of more
than two characters: are permitted in res-
tricted cases, but are not discussed here. An
apostrophe itself may be included in a string
constant by writing it as two. consecutive
apostrophes. Examples of string constants
are ‘A’, “AB’, and . The last example is the
string consisting of the apostrophe character.

The value of a string constant is the ASCII
code of the character(s) in the string. For
example, the value of ‘A’ is 41 H and the value
of ‘AB’ is 4142H. Thus, string constants and
whole-number constants can be used inter-
changeably.

COMMENTS

Any sequence of characters following a semi-
colon (;) up to the end of the line are com-
ments. They are ignored by the assembler
and should be used generously in your pro-
gram to document what you are doing. While
comments like

INC CX :increment CX -

convey little information, comments like

INC CX ;increment outer

loop counter

make a program more readable.

Expressions

One more building block, namely expres-
sions, must be introduced before we can
build statements. Expressions are built up
from some of the tokens just described.

Loosely speaking, an expression is a sequence
of operands and operators combined to pro-
duce a value at program assembly time. How
are operands and operators combined to
produce the value of an expression?

OPERANDS
An operand is something that has either a
numeric value or a memory address value.

2-25

Operands with numeric values are constants,
or identifiers that represent constants. Some
numeric-valued operands, appearing in our
sample program are 100 and PORT_VAL.
The permissible range of values for such oper-
ands is from -65,535 to +65,535.

Note that the value of an operand may be
negative, but a constant is never negative. A
minus sign can be written in front of a con-
stant, but is never considered a part of the
constant; it is an arithmetic operator.

Memory-address operands are frequently
identifiers, such as SUM and CYCLE in the
sample program. The value of a memory
address is not simply a number; it is a set of
components, each component generally being
a number. One component is the 16 most-
significant bits of the segment starting address
where the memory address is contained. The
four least-significant bits of a segment start-
ing address are always zeros.

Another component is the offset address
within the segment. These two components
are referred to as the segment and offset of
the memory-address operand.

Another operand is an expression itself,
enclosed in parentheses, and used in some
bigger expression, as in 3*(PORT_VAL+YS).

OPERATORS

An operator takes the value of one or more
operands and produces a new. value. There
are five kinds of operators in ASM-86

1) arithmetic operators
2) logical operators

3) relational operators
4) analytic operators
5) synthetic operators

Arithmetic Operators

Arithmetic operators are the familiar addi-
tion operator (+), subtraction operator (—),
multiplication operator (*), and division
operator (/). Another arithmetic operator,
MOD, produces the remainder after doing a

ARCHITECTURE AND INSTRUCTIONS

division. Thus 19/ 7is 2, whereas 19 MOD 7is 5.

Arithmetic operators may always be applied
to a pair of numeric operands, and the result
will be numeric. The rules for applying
arithmetic operators on memory-addressing
operands are more restrictive: such opera-
tions are valid only if the result has a
meaningful physical interpretation.

For example, the product of two memory
addresses has no meaningful interpretation.
What segment would it be in? What offset
would it have? Hence, it is a prohibited
operation.

The difference of two memory addresses in
the same segment is the numeric distance
between them — the difference in their offsets.

The only other meaningful arithmetic opera-
tion on a memory address is adding or
subtracting a numeric value. Thus SUM+2,
CYCLE-5, and NOT_DONE-GO would all
be valid expressions in the sample program.
SUM_CYCLE would not be a valid expres-
sion because they are in different segments.

NOTE: The value of SUM+2 is a memory
address two bytes beyond SUM in the MY

nirmario valiia

1Hullc1LIv vaiucv
that is 2 plus-the-contents-of-location-SUM.
Such contents are not known until program
execution, whereas expressions are evaluated
at assembly time.

NATA cagments i+ ic 117 the
— DATA segment; it is 7io? tne

Logical Operators
The logical operators are bit-by-bit AND,
OR, XOR (exclusive-or), and NOT.

The operands of logical operators must be
numeric only — memory-address operands
are not allowed — and the result will be
numeric. This is shown by:

1010101010101010B AND 11001100110011008B
is 10001000100010008B;

1100110011001100B OR 1111000011110000B
is 1100000011000000B;

NOT 1111111111111111B is 00000000000000008
and

1111000011110000B XOR SUM is invalid.

2-26

As an example of logical operators, consider:

IN
ouT

AL,PORT_VAL
PORT_VAL AND OFEAH,AL

The IN instruction gets input from PORT
__VAL, wherever that is.

Execution of the OUT instruction sends out-
put to port PORT_VAL AND OFEH, which
is either the same port, if PORT_VAL is even,
or the next lower-numbered port, if PORT
__VAL is odd. The actual port value of the
OUT instruction is determined when the
instruction is assembled, not when it is
executed.

Observe that AND, OR, XOR, and NOT are
instruction mnemonics as well as ASM-86
operators.'As ASM-86 operators, they cause
a value to be computed when the program is
being assembled. As instruction mnemonics,
they perform their roles when the program is
being executed:

AND DX,PORT_VAL AND OFEH

will cause the assembler to compute the value
of PORT_VAL AND OFEH and then gener-
ate an AND-immediate instruction contain-
ing that value in its data field. When this
instruction is later executed, it will cause the
contents of the DX register to be ANDed
with that value and the result placed in the
DX register.

Relational Operators

1) Equal (EQ)

2) not-equal (NE)

3) less-than (LT)

4) greater-than (GT)

5). less-than-or-equal (LE)

6) greater-than-or-equal (GE)

PORT_VAL LT 5 is a relational operator.
The two operands must both be numeric or
must both be memory addresses in the same
segment. The result is always a numeric
value. It will be 0, if the relationship is false,

ARCHITECTURE AND INSTRUCTIONS

and OFFFFH (16 bits of 1’s) if the relation-
ship is true.

Using a relational operator:

MoV BX,PORT_VAL LT 5
The assembler will assemble

MOV BX,0FFFFH

if the value of PORT_VAL is < 5;
otherwise the assembler will assemble
MOV BX,0

At first it may appear that relational opera-
tors are not useful. It’s not often that you
want to generate an instruction with a field
that contains either 0 or OFFFFH, and no
other choices. However, by combining rela-
tional operators with logical operators, the
two relational results of 0 and OFFFFH can
be molded into any numeric values you
desire:

MOV BX,((PORTVAL LT 5)AND 20)
& OR ((PORT VAL GE5) AND 30)

will assemble

MQV BX,20

if PORT_VAL is less than 5, and
MOV BX,30

otherwise.

Note the generous use of parentheses to force
the order that operators are applied. If you
always use parentheses to make the ordering
explicit, you won’t have to memorize the
rules about which operators get evaluated
first.

Analytic Operators

The analytic operators decompose memory-
address operands into their components,
while synthetic operators build memory-
address operands from their components. A
discussion of these operators is presented
after we learn more about memory-address
operands. (see page 2-30)

2-27

Statements

There are two kinds of ASM-86 program
statements: instruction statements (MOV,
ADD, JMP, etc.) and directive statements
(DB, SEGMENT, EQU, etc.)

Each instruction statement causes the assem-
bler to generate an instruction in the object
code. Directive statements tell the assembler
what kind of code to generate for succeed-
ing instruction statements. The directive
statement

MY_PLACE DB

tells the assembler that MY_ PLACE is
defined as a byte. The assembler allocates a
memory address for MY_PLACE. Later,
when the assembler encounters the instruc-
tion statement

INC MY_PLACE

it will generate an object code instruction to
increment the contents of MY_ PLACE.
Because of the previously-encountered direc-
tive statement, the assembler will know to
place a ‘0’ (to indicate a byte) in the w field of
the increment instruction.

?

The formats of the two kinds of statement are
similar. The instruction statements are of the
form

label; mnemonic argument,...,argument ;comment

The directive statements are of the form

name directive argument,...,argument ;comment

The label in an instruction statement is fol-
lowed by a colon, whereas the name in a
directive statement is not. This highlights
the difference between the two kinds of
statements.

A label associates a symbolic name with the
location of an instruction. A label can be
used as an operand in a jump or call
instruction.

The name in a directive statement has no
relation to an instruction location and can
never be jumped to.

ARCHITECTURE AND INSTRUCTIONS

Labels in instruction statements are always
optional; names in directive statements can
be mandatory, optional, or prohibited, depend-
ing on the particular directive.

Mnemonics in instruction statements specify
the purpose of the statement. Directives, in
directive statements, specify the purpose of
the statement. The instruction mnemonics
correspond to the set of approximately 100
opcodes available in the 8088. The directives
correspond to the set of some 20 functions
provided by the ASM-86 assembler (Fig.
2-14).

The mnemonic or directive may require addi-
tional information to define its purpose
completely. This information is provided by
a sequence of arguments.

Optional comments make the program more
readable; when present they must be pre-
ceded by a semicolon.

Directive Statements

The various directive statements in ASM-86
are:

1) symbol-definition

2) data-definition

3) segmentation-definition
4) procedure-definition
5) termination

Symbol-Definition Statements

The EQU statement provides a means for
defining symbolic names to represent values
or other symbolic names. The two forms of
the EQU statement are illustrated:

Some examples are:

BOILING_POINT EQU 212

BUFFER_SIZE EQU 32
NEW_PORT EQU PORT_VAL+1
COUNT EQU CX

The last example differs from the other three
in that COUNT does not represent a value; it
is a synonym for the CS register.

A symbolic name can be “undefined” by a
PURGE statement so it may later represent
something entirely different:

PURGE BUFFER.SIZE

Data-Definition Statements

Data-definition allocates memory for a data
item, associates a symbolic name with that
memory address, and optionally supplies an
initial value for the data. Symbolic names
associated with data items are called vari-
ables. Examples of data-definition statements
are: (see below)

In the example below, THING is a symbolic
name associated with a byte in memory,
BIGGER _THING with two consecutive
bytes in memory, and BIGGEST_THING
with four consecutive bytes in memory.

Initial Values

Before we can discuss the question marks (?),
we need to introduce the concept of initial
values of data items.

The object code produced by the assembler
contains the I’s and 0’s that make up each
instruction and the memory address at which
each instruction should reside. After the
object code is produced, the instructions are

name EQU expression

new name EQU old_.name
THING DB ?
BIGGER_THING DwW ?

BIGGEST_THING DD ~?

;defines a byte
;defines a word (2 bytes)
,defines a doubleword (4 bytes)

ARCHITECTURE AND INSTRUCTIONS

loaded into memory at the indicated addresses
and then executed..

At the time the instructions are loaded, initial
values for data items could also be loaded
into memory. This means that the - object
code, besides containing instructions and
their addresses, may also' contain initial
values for data items and their addresses.
These initial values are specified ‘to the
assembler in the data definition statements.

The following statement will cause the
assembler to produce object code that, when
loaded into memory, will result in a 25 being
placed in the memory address allocated to
THING;

THING DB 25 :byte initially contains 25

A question mark in place of an initial value
means that we do not choose to specify an
initial value for that data item; we will be
satisfied with whatever initially appears in the
corresponding memory location.

When the assembler sees the question mark,
it still allocates memory for the data item, but
does not produce object code to initialize the
memory location (although it could). -

In general, the initial value could be specified
by an expression, since expressions are eval-
uated at assembly time. So we can write
statements like:

IN.PORT
OUT_PORT

DB
DB

PORT_VAL
PORT_VAL+1

Recall that expressions come in two varieties
— numeric and memory address. It is mean-
ingful to initialize either a byte, or a word, or
a double-word with a numeric value. But,

what about a memory-address value? It won’t
fit into a byte, but the offset component fits
into a word; and, both the offset components
fit into a double word. So we can write
initialization statements like those shown at
the bottom of this page. ’

The initialization of LITTLE_CYCLE per-
mits an indirect intrasegment jump or call to
use the date item named LITTLE CYCLE to
transfer control to the label named CYCLE.
Similarly, an intersegment jump :or -call
transfers control to CYCLE by using the data
item named BIG_CYCLE. v

Tables

So far we have used data- deﬁnmon state-
ments to define one byte, word, or double-
word at a time. Often, we deal with tables of
bytes, words, or double words. For example,
the 8088 XLAT instruction uses a table of
bytes to translate an encoded value into the
same value under a different encoding. The
8088 interrupt mechanism uses- a ‘table of
double-words, starting’at memory location 0
to point to the starting addresses of the inter-
rupt service routines. And, the 8088 string
instructions. operate on tables of bytes or
words containing the string elements,

A table is defined by placing several initial
values on a data-definition statement. The
following statement defines a table of bytes
containing powers of 2:

POWERS2 DB 1248,16
The byte at the memory address correspond-
ing to POWERS_2 will be initialized to 1

(when the object code is loaded into memory).

LITTLE.CYCLE DW CYCLE
BIG.CYCLE DD CYCLE
CYCLE

MOV BX,AX

;offset of CYCLE
;offset and segment of CYCLE

2-29

ARCHITECTURE AND INSTRUCTIONS

The next four bytes will be initialized to 2,4,8,
and 16; respectively. A table of ‘bytes, all
initialized to zero, can be defined by

ALL.ZERO DB- 0,0,0,0,00
or by the shorthand notation
ALL.ZERO DB 6 DUP (0)

And, ﬁhally, an un-initialized table can be
defined by either of the following equivalent
statements:

DONT—CARE DB ?9?v?a?;?i?y?, H

DONT_CARE DB 8 DUP (?)

TYPES OF MEMORY LOCATIONS

ASM-86 associates a type with every memory
location referred to in the program so it can
generate the correct code for instructions that
accesses memory. For example, the data-
definition statement

SUM DB ?

informs the assembler that the memory loca-
tion SUM is of type BYTE. Later, when the
assembler encounters an instruction state-
ment such as

INC SUM

the assembler will know to generate a byte-
increment instruction, rather than a word-
increment instruction.

gy

A memory location can be one of the follow-
ing types:
1) BYTE of data, as in:

SUM DB ?
2) WORD of data (two consecutive bytes), as
in:

;defining a byte

BIGGERSUM DW ? ‘
3) DWORD of data (four consecutive bytes),
asin:

BIGGEST.SUM DD ?

;defining a word

;defining a doubleword

4) NEAR instruction location, as in:
CYCLE: CMP SUM,100

5) FAR instruction location:
(means of defining such locations will
be discussed shortly)

2-30

An instruction location can appear in a jump
or call instruction statement. The assembler
will generate an intrasegment jump or call if
the location type is NEAR, and an interseg-
ment jump or call if it is FAR. For example,
the labeled instruction statement

CYCLE: CMP SUM,100

informs the assembler that the memory loca-
tion CYCLE is of type NEAR. (We will see
shortly how the synthetic operators PTR and
THIS are used to define a memory location
of type FAR). Later, when the assembler
encounters an instruction such as

JMP CYCLE

the assembler will know to generate an intra-
segment jump instruction, rather than an
intersegment jump instruction.

A memory address built by adding or sub-
tracting a numeric value to or from some
other memory address has the same type as
the original memory address. For example,
SUM+2 is a BYTE, BIGGER_SUM-3 is a
WORD, and CYCLE+1 is a NEAR instruc-
tion location.

ANALYTIC AND SYNTHETIC OPERATORS
We now know enough about memory addres-
ses to complete the discussion of operators.

The analytic operators decompose memory-
address operands into their components.
These operators are:

1) SEG
2) OFFSET
3) TYPE
4) SIZE
5) LENGTH

The SEG operator returns the segment com-
ponent of the memory-address operand. The
OFFSET operator returns the offset compo-
nent. Both of these components are generally
numeric values.

The TYPE operator returns a numeric value,

which is the type component of the memory-
address operand. The value of the type

ARCHITECTURE AND INSTRUCTIONS

component for the various memory-address
operands is:

Type
Memory Address Operand | Component
BYTE of data 1
WORD of data 2
DWORD of data 4
NEAR instruction location -1
FAR instruction location -2

Notice that the type component for bytes,
words, and double words corresponds to the
number of bytes that each occupies. The
value of the type component for instruction
locations does not have a physical interpreta-
tion.

The LENGTH and SIZE operators apply
only to data-memory-address operands
(BYTE, WORD, or DWORD).

The LENGTH operator returns a numeric
value for the number of units (bytes, words,
or double words) associated with the memory-
address operand.

The SIZE operator returns a numeric value
for the number of bytes allocated for the
memory-address operand. For example, if
MULTILWORDS is defined by

MULTIL.WORDS DW 50 DUP (0)

then LENGTH MULTI_WORDS is 50 and
SIZE MULTI_WORDS is 100. Notice that
SIZE X is equal to (LENGTH X)* (TYPE
X).

PTR and THIS

The synthetic operators build memory-
address operands from their components.
These operators are PTR and THIS.

The PTR operator builds a memory-address
operand that has the same segment and offset
of some other memory-address operand, but
has a different type. Unlike a data-definition
statement, the PTR operator does not allo-
cate memory; it merely gives another mean-
ing to previously-allocated memory. For
example, if TWO_BYTE were defined by,

TWO._BYTE DwW ?

then we could name first the byte in the word
as follows:

ONEBYTE EQU BYTEPTRTWQBYTE

In this example, the PTR operator creates a
new memory-address operand having the
same segment and offset components as
TWO_BYTE, but having a type component
of BYTE. We can name the second byte of
TWO_BYTE either as

OTHERBYTE EQU BYTEPRT (TWQBYTE+1)

or more simply as
OTHER.BYTE EQU
The PTR operator can also create
double-words as illustrated below:

words and

MANY BYTES
FIRST WORD
SECOND DOUBLE EQU

DB

100 DUP (?)
EQU WORD PTR MANY_BYTES
DWORD PTR (MANY-BYTES

;an array of 100 bytes

2-31

ARCHITECTURE AND INSTRUCTIONS

Further, the PTR operator can create loca-
tions of instructions:

INCHES: CMP SUM,100 ;type of INCHES is NEAR
JMP INCHES ;intrasegment jump
MILES ; EdU FAR PTR INCHES ;type of MILES is FAR
’ JMP MILES ;intersegment jump

Notice that the above shows ways to build this example, MY_BYTE could have been
new memory-address operands from old built with the PTR operator instead:

ones by MY BYTE EQU BYTE PTR MY WORD
1) using the PTR operator asin BYTE PTR :

TWQBYTE The THIS operator is convenient for defining
2) using expressions as in ONE BYTE+1 FAR instruction locations:

3) using a combination of PTR and expres- MILES EQU THIS FAR
sions as in BYTE PTR (TWQBYTE+1) CMP SUM, 100

Expressions are useful when we wish to
change the offset component but leave the

type component unchanged. JMP MILES
Neither expressions, nor PTR, changes the Note that the use of the THIS operator in the
segment component. And the new memory- example made it unnecessary to have a
address operand, created by either expres- NEAR instruction location with the same
sions or PTR, will have a length component segment and offset as MILES. If we used the
of 1 (providing it’s not an instruction PTR operator instead of the THIS operator,
location). such a NEAR instruction would have been
The synthetic operator THIS, like PTR, necessary.
builds a memory-address operand of a speci- Segmentation-Definition Statements
fied type, without allocating memory for it. The segmentation-definition statements orga-
The segment and offset component of the nize our program to use the 8088 memory
new memory-address operand is the segment segments. These directives are:
and offset of the next memory location avail- 1) SEGMENT
able for allocation. For example: 2) ENDS
3) ASSUME

. 4) ORG

m:\?ngED ES’VU ?TH'S BYTE The SEGMENT and ENDS statement sub-

divide the assembly-language source pro-
gram into segments. Such segments
correspond to the memory segments where

would create MY_BYTE with type compo- the resulting object code will eventually be
nent of BYTE, and with the same segment loaded. The assembler is concerned with pro-
and offset components as MY_WORD. In gram segmentation for the following reasons.

2-32

ARCHITECTURE AND INSTRUCTIONS

One, intrasegment jump and call instructions
contain only the offset (16-bits) of the new
location. Intersegment jump and call instruc-
tions must contain the segment (another
16-bits) in addition to the offset.

Second, data-accessing instructions that use
the current data segment and current stack
segment in the manner most optimal for the
8088 architecture contain only the offset
(16-bits) of the data location. Any other
instruction that accesses a data location
within one of the four currently-addressable
segments must contain a segment-overriding
prefix (another. 8-bits) in addition to the

offset. Here, current refers to' when the
instruction is executed, not assembled.

Therefore, to assemble the correct object
code, the assembler must }(nbw the segment
structure of the program and which segments
will be addressable — pointed at by segment
registers — when various instructions are
executed. This information is supplied by the
ASSUME directive.

The following example shows® how the

‘SEGMENT, ENDS, and ASSUME direc-

tives can be used to define a code, data, extra,

.and stack segment:

MY_DATA ‘SEGMENT
X DB 2
Y B DW ?
Z " DD ?
MY_DATA ENDS
MY_EXTRA SEGMENT
ALPHA DB ?
BETA . DW ?
GAMMA DD ?
MY_EXTRA ENDS
MY_STACK SEGMENT
DW 100 DUP (?) ;this is the stack
TOP EQU THIS WORD
MY_STACK ENDS
MY_CODE SEGMENT
ASSUME CS:MY_CODE,DX:MY_DATA
ASSUME ES:MY_EXTRA,SS:MY_STACK
START: MOV AX,MY_DATA ;initializes DX
MOV DS,AX
MOV AX,MY_EXTRA sinitializes ES
MOV ES,AX
MOV AX,MY_STACK ;initializes SS
MOV SS,AX
MOV SP,OFFSET TOP ;initializes SP
MY_CODE ENDS

END START

ARCHITECTURE AND INSTRUCTIONS

Observe that the code at the head of the
MY_CODE segment will, at program execu-
tion, initialize the various segment registers to
point to the appropriate segments, and the
code will initialize the stack pointer to point
to the end of the stack segment.

The ASSUME statement makes the assem-
bler aware of segment register values when
the code is executed.

To illustrate the purpose of the ASSUME
statement, let’s consider code (within SEG-
MENT MY_CODE) that moves the contents
of byte X to byte ALPHA. To do this, we
need an instruction that moves the contents
of X into a register, say BX, and an instruc-
tion that moves the contents of the register
into ALPHA. How about:

MOV BXX
MOV ALPHA,BX

‘from X to BX
:from BX to ALPHA

During execution of such MOV instructions,
the 8088 processor would normally use the
DS register to find the starting address of the

segment where the specified item (X or
ALPHA) is located. This will work fine when
accessing X — the first instruction — because
DS will indeed contain the starting address of
segment MY_DATA where X is located.

But, this will ‘not work when accessing
ALPHA — the second instruction — because
the starting address of segment MY EXTRA,
where ALPHA is located, will not be con-
tained in DS.

The ASSUME statement has made the
assembler aware that the first instruction will
execute properly. The assembler is also aware
(thanks to the ASSUME statement) that the
starting address of MY_EXTRA, although
not in DS, will be in one of the other segment
registers — namely ES. The assembler, there-
fore, generates a segment-overriding prefix
for the second instruction so that it too, will
execute properly.

It’s not always possible to know what will be
in the segment registers when a particular
instruction will be executed. Consider:

OLD_DATA

OLD_BYTE DB ?

OLD_DATA ENDS

NEW_DATA SEGMENT

NEW_BYTE DB ?

NEW_DATA ENDS

MORE_CODE SEGMENT
ASSUME CS:MORE_CODE
MOV AX,OLD_DATA ;put OLO__DATA into
MOV DS,AX ;...DS and
MOV ES,AX ;..ES
ASSUME DS:OLD_DATA,ES:OLD_DATA

CYCLE: INC OLD_BYTE ;what's in DS now?
MOV AX,NEW_DATA ;put NEW_DATA
MOV DS,AX ;...into DS
JMP CYCLE

MORE_CODE ENDS

2-34

ARCHITECTURE AND INSTRUCTIONS

The first time the INC instruction is exe-
cuted, DS will contain OLD_DATA and the
indicated assumption on DS will be correct.
But then DS will be changed to: NEW
_DATA, and the same INC instruction will
be executed a second time. Therefore, it
would be wrong for the assembler to make
assumptions about the contents of DS when
the INC instruction is executed. The assem-
bler must generate a segment-override prefix
— specifying the extra segment — on the
INC instruction, even .though this prefix
would be unnecessary on the first execution
of INC. '

In order to tell the assembler not to make any
assumptions about DS, we must place the
following assumption just before the INC
instruction: ' ’

ASSUME DS:NOTHING

CYCLE: INC OLDBYTE

Prior to, or at the very beginning of any seg-
ment containing code, we must tell the
assembler (via an ASSUME statement) what
it should assume will be in the CS register
when that segment of code is executed.

Instead of using an ASSUME statement, we
could tell the assembler which segment regis-
ter should be used for the execution.of each
instruction. For example, the move of X to
ALPHA in the previous example could be
written as:

MOV
MOV

BX, DS:X
ES:ALPHA,BX

This says that DS should be used when X is
accessed, and ES should be used when
ALPHA ‘is accessed. Since the processor

2-35

would normally use DS when executing these
instructions, the assembler produces a segment-
overriding - prefix when generating object
code for the second instruction, but not for
the first instruction.

Efficient Programming
Now let’s look at one of the shortcomings of
memory segments to see how to get around it.

Memory segments al/ways start on 16-byte
boundaries. Remember that the last 4 bits of
segment starting addresses are zero. A seg-
ment can be up to 216 bytes long. If a
segment does not use all of its approximately
65,000 bytes, some other segment can start
just beyond the last byte used by the first
segment. But the second segment must also
start on a 16-byte boundary, and, therefore,
may not start immediately after the last byte
used by the first segment. This means there
could be up to 15 bytes wasted between
segments.

Suppose the first segment starts at address
1000 (hexadecimal) and uses only 6D (hexa-
decimal) bytes. So the last byte used is at
address 1006C. The closest the second seg-
ment could start would be at address 10070,
thereby wasting the bytes at 1006D, 1006E,
and 1006F. ‘ ’

Now, instead of starting the second segment
at the lowest 16-byte boundary beyond the
last byte used by the first segment, start the
second segment at the highest 16-byte boun-
dary that does not cause any bytes to be
wasted: thus, we could start the second seg-
ment at address 10060. This results in the last
few bytes — 13 to be exact — used by the
first segment to be also in the second
segment.

But the second segment would then simply
not use its first few bytes, which is efficient.
So, if the second segment starts at 10060, the
bytes in the second segment below offset
000D are simply not used by the second seg-
ment. Therefore, no bytes are wasted.

ARCHITECTURE AND INSTRUCTIONS

Ordinarily, it doesn’t matter where in mem-
ory segments are located, so we let the
translator make that choice. However, we
might want to give the translator some con-
straints such as “don’t overlap this segment
with any other segment,” «
byte used by this segment is at an even
address — so that word accesses can be done
in a single memory reference,” or “start this
segment at the following address.” We can
write these constraints into the source
program:

1) Don’t overlap.. First usable byte in seg-
ment is on a 16-byte boundary and has an
offset of 0000.

make sure the first_

MY_SEG SEGMENT ;this is the normal case

MY_SEG ENDS

2) Overlap if you must, but first usable byte
must be on a word boundary.

MY_SEG SEGMENT WORD ;word aligned

MY_SEG ENDS

3) Overlap if you must, and place first usable
byte anywhere you like.

MY_SEG SEGMENT BYTE ;byte aligned

MY_SEG ENDS

4) Start segment at specified 16-byte boun-
dary. First usable byte is at specified offset.

MY_SEG SEGMENT AT 1A2BH ;address 1A2B0
ORG 0003H ;address 1A2B3

MY_SEG ENDS

The last example introduced another state-
ment, ORG (for origin). It specifies the next
offset to be used in the segment.

2-36

Procedure-Definition Statements

Procedures are sections of code that are
called into execution from various places in
the program. Each time a procedure is called
upon, the instructions that make up the
procedure are executed, then control is
returned to the place from which the proce-
dure was originally called.

The 8088 instructions to call and return from
a procedure are CALL and RET. These
instructions come in two flavors — intraseg-
ment and intersegment.

The intersegment instructions push (CALL)
and pop (RET) both the segment and the
offset of the place where the procedure
should return. :

The intrasegment ones push and pop only the
offset.

Near and Far

Procedures called with intrasegment CALLs
must return with intrasegment RETurns.
Such procedures are known as NEAR
procedures. Similarly, procedures that are
called with intersegment CALLs must return
with intersegment RETurns and are known
as FAR procedures.

The procedure-definition statements, PROC
and ENDP (end procedure), delimit a proce-
dure and indicate whether it is a NEAR or
FAR procedure. This helps the assembler in
two ways. First, when assembling CALLs to
that procedure, the assembler will know
which kind of CALL to assemble. Secondly,
when assembling RETs from that procedure,
the assembler will know which kind of RET
toassemble: (see table on next page)

Since UP_COUNT is declared to be NEAR
procedure, all CALLs to it are assembled as
intrasegment CALLs, and all RETurns with-
in it are assembled as intrasegment returns.

This example points out some similarities
between the RET instructions and the HLT
instruction. There may be more than one

ARCHITECTURE AND INSTRUCTIONS

MY_CODE SEGMENT _ .
UP_COUNT PROC NEAR
ADD cx,1
RET
UP_COUNT ENDP
START: A
CALL " UPCOUNT
CALL UPCOUNT
i HLT
MY.CODE ENDS
END

START

RET in a procedure, just as there may be
more than one HLT in a program.

The last instruction'in a procedure (program)
need not be a RET *HLT); but, if it isn’t, that
instruction should be a jump back to some-
where within the procedure (program).

The END (ENDP) tells the assembler where
the procedure (program) ends, but does not
cause the assembler to generate a RET
(HLT) instruction. '

Termination Statements

With one exception, each terminating state-
ment is paired up with some beginning
statement. For example, SEGMENT and
ENDS, PROC and ENDP. These terminat-
ing statements are described with their
corresponding beginning statements.

The one exception is END, which flags the
end of the source program. It tells the
assembler that there are no more instruc-
tions to assemble. The form of the END
statement is

END

where the expression must yield a memory-
address value. That address is the address of
the first instruction to be executed when the
program is executed.

expression

The following example illustrates the use of
the END statement:

2-37

START:

END START

Instruction Statements

The instruction statements, for the most part,
correspond to the instructions of the 8088
processor. Each instruction statement causes
the assembler to generate one 8088 instruc-
tion. An 8088 instruction consists of an
opcode field and fields specifying the operand-
addressing mode (mod field, r/m field, reg.
field).

So the instruction statements in ASM-86
must contain an instruction mnemonic as
well as sufficient addressing information to
permit the assembler to generate the instruc-
tion.

INSTRUCTION MNEMONICS

Most of the instruction mnemonics are the
same as the symbolic opcode names for the
8088 instructions. Some additional instruc-
tion mnemonics, NIL and NOP, make the
assembly language more versatile.

No-Operation

The instruction mnemonic NOP causes the
assembler to generate the 1-byte instruction
that exchanges the contents of the AX
register with the contents of the AX register
(hexadecimal opcode 90). Besides not doing
anything, NOP doesn’t waste any time not
doing it, since it doesn’t make any memory
accesses. Does it seem strange to waste
precious memory locations on instructions
that do nothing? There are good reasons for
doing so.

The NOPs might serve as placeholders for
instructions to be filled in later, possibly
when the program is executing — an old trick.

ARCHITECTURE AND INSTRUCTIONS

They might also be used to slow down a
portion of the program where premse timing
relationships are important.

Placeholder

NIL is the only instruction mnemonic that
does not cause the assembler to generate any
instructions. In contrast to NOP, which
causes the assembler to generate an instruc-
tion that does nothing when executed, NIL
doesn’t even cause an instruction to be
generated. KR

NIL serves as a convenient placeholder for
labels in the assembly-language program:

CYCLE: NIL
INC AX

Although this is equivalent to
CYCLE: INC AX

the NIL makes it much easier to insert
instructions ahead of the INC instruction in
the source program, if the need arises later.

INSTRUCTION PREFIXES

The 8088 instruction set permits instructions
to start off with one or more prefix bytes. The
three possible prefixes are:

1) segment-override
2) repeat
3) lock

ASM-86 permits the following prefixes to be
included with the instruction mnemonic:

LOCK

REP (repeat)

REPE (repeat while equal)
REPNE (repeat while not equal)
REPZ (repeat while zero)
REPNZ (repeat while non-zero)

A sample instruction statement using a prefix
is:
CYCLE:

LOCK DEC COUNT

The segment-overriding prefix is generated
automatically by the assembler. whenever the
assembler realizes that a memory access
requires such a prefix. The asembler makes
this decision in two steps.

First, it selects a segment register that will
make the instruction execute properly. The
assembler selects the segment register based
on information it received from previous
ASSUME statements. However, we can
force the assembler to select a particular
segment register by including that register in
the instruction as in:

MOV BX,ES:SUM

Secondly, the assembler determines if a
segment-overriding prefix is necessary to
force execution of the instruction to use the
selected segment register.

OPERAND-ADDRESSING MODES

The 8088 processor provides various operand-
addressing modes. ASM-86 must therefore
provide a means of expressing each mode
when writing instruction statements: For
example:

1) Immediate:

MOV AX,15 ;15 is an immediate operand
2) Register:

MOV AX15 ;AX is a register operand

3) Direct:

SUM DB ?

MOV SUM,15 ;SUMis a direct memory
operand

4) Indirect through base register:

MOV
MOV

AX,(BX)
AX,(BP)

5) Indirect through index register:

MOV AX,(SI)
MOV AX,(DI)

ARCHITECTURE AND INSTRUCTIONS

6) Indirect through base register plus index
register:

MOV AX,(BX) (Sh)
MOV AX,(BX) (DI)
MOV AX,(BP) (SI)
MOV AX,(BP) (DI)

7) Indirect through base or index register
plus offset:

MANY_BYTES DB 100 DUP(?)

MoV

AX,MANY_BYTES(BX)
MOV AX,MANY BYTES(BP)
MOV AX,MANY_BYTES(SI)
MOV AX,MANY_BYTES(DI)

8) Indirect through base register plus index
register plus offset:

MANYBYTES DB 100 DUP(?)
MOV AX,MANY_BYTES(BX) (SI)
MOV AX,MANY_BYTES(BX) (Dl)
MOV AX,MANY_BYTES(BP) (SI)
MOV AX,MANY_BYTES(BP) (DI)

The assembler uses its knowledge about a
memory location’s type when generating
instructions that reference that memory
location. For example, the assembler gen-
erates a byte-increment when encountering
the following:

?

SUM DB itype is BYTE

INC SUM ;a byte increment

However, with indirect operand-addressing
modes, it is not always possible for the

2-39

assembler to know the type of the memory
location, as illustrated by:

MOV AL,(BX)

Even though the assembler does not know
the type of the source operand in the above
instruction, it does know that the type of the
destination operand, AL, is BYTE. So the
assembler assumes that (BX) is also of
type BYTE and generates a byte-move
instruction.

But now consider the statement:
INC (BX)

There is no second memory location here to
help the assembler determine the type of

+ AarsiAd hath
(BX). So the assembler cannot decide whether

to generate a byte-increment instruc-
tion or a word-increment -instruction. The
above statement must therefore be written as
shown so the assembler can determine the
type:

INC ‘BYTE PTR (BX) ;a byte-increment
or '

INC WORD PTR (BX) ;aword-increment

STRING INSTRUCTIONS

The assembler can usually discern the type of
an operand from its declaration, and hence
know what kind of code to generate for
accessing that operand.

However, we have just seen that, when using
an indirect-addressing mode, we might have
to supply the assembler with additional
information so it can determine the type.

String Primitives

String instructions also need such additional
information. Consider the string instruction
MOVS.

This instruction moves the contents of the
memory address whose offset is in SI into the
memory address whose offset is in DI. We
should not need to specify any operands,
since the instruction has no choice as to
which items to move and where.

ARCHITECTURE AND INSTRUCTIONS

However, the instruction could move either a
byte or a word. The assembler must know
which is being moved, so it can generate the
correct instruction. For this reason, the
ASM-86 statement for the MOVS instruc-
tion must specify the items that have been
moved into SI and DI '

For example:

ALPHA DB ?

BETA DB ?
MOV SI,OFFSET ALPHA
MOV DI,OFFSET BETA
MOVS BETA,ALPHA

The presence of BETA and ALPHA in the
MOYVS statement tells the assembler to gen-
erate a MOVS instruction that moves bytes,
because the: TYPE components of both
BETA and ALPHA are BYTE. Further,
from the SEG components of BETA and
ALPHA, the assembler determines if the

operands of the MOVS instruction-are inac-
cessible segments. The OFFSET components
of ALPHA and BETA are ignored.

Like MOVS; the other four string primitives
contain operands, MOVS and CMPS have
two operands, while SCAS, LODS, and
STOS have one. For example:

CMPS BETA,ALPHA
SCAS ALPHA
LODS ALPHA
STOS BETA

XLAT also requires an operand; the item
that was moved into BX to serve as the trans-
lation table. The SEG component of this
operand erables the assembler to determine
if the translation table is in a currently access-
ible segment; the OFFSET component is
ignored. An example of an XLAT statement
is as follows: '

MOV BX,OFFSET TABLE
XLAT TABLE

Details of ASM-86

Sample One:
Translate the values from input port 1 irito a
Gray code and send result to output port 1.

MY _DATA

SEGMENT
GRAY) DB 18H,34H,05H,06H,09H,0AH,0CH,11H,12H,14H
MY __DATA ENDS
MY _CODE SEGMENT
ASSUME CS:MY _CODE, DS:MY _DATA
GO: " MOV AX,MY _DATA ;establish data segment
i MOV DS,AX
MOV BX,OFFSET GRAY ;translation table into BX
CYCLE: IN AL,1 ;read in next value
. XLAT GRAY translate it
ouT 1,AL ;output it
’ JMP CYCLE ;and repeat
MY_CODE ENDS

END GO

2-40

ARCHITECTURE AND INSTRUCTIONS

Sample Two:
Add two unpacked BCD (ASCII) strings
together.
MY _DATA SEGMENT
STRING _1 DB 1,752 ;value is 2571
STRING_2 DB '3,'8','1','4’ ;value is 4183
MY_DATA ENDS
MY _CODE SEGMENT
ASSUME CS:MY_CODE, DS:MY_DATA
GO: MOV AS,MY_DATA ;establish data segment
MOV DS,AX
CLC ;no carry initially
CLD ;forward strings
MOV SI,OFFSET STRING _1 ;establish string pointers
MOV DI,OFFSET STRING .2
CYCLE: LODS STRING -1 : ;get STRING _1 element
ADC AL,[DI] ;add STRING 2 element
AAA ;correct for ASCII
STOS STRING_-2 ;result into STRING _2
JCXZ CYCLE ;repeat for extra string
HLT ;correct for ASCII
MY_CODE ENDS
END GO
Sample Three:
Decimal multiplication algorithm.
MY _DATA SEGMENT
A DB 37,549
B DB '8’
C DB LENGTH (A) DUP (?)
MY_DATA ENDS
MY_CODE SEGMENT
ASSUME CS:MY_CODE,DS:MY _DATA
GO: MOV AX,MY_DATA ;establish data segment
MOV DS,AX
CLD ;forward strings
MOV SI,OFFSET A ;establish pointers
MOV DI,OFFSET C
Mov CX,LENGTH A ;establish count
AND B,0FH ;clear upper half of b
MOV BYTE PTR (SI},0 ;clear cfl]
CYCLE: LODS A ;get ali]
AND AL,0FH ;clear its high-order bits
MUL AL,B ;multiply by b
AAM ;correct for ASCII
ADD D] ;add to cfi]
AAA ;adjust for ASCII
STOS C ;store in cli)
MOV [DI],AH ;...and c[l]
JCXZ CYCLE ;repeat for entire string
HLT
MY_CODE ENDS
END GO

2-41

ARCHITECTURE AND INSTRUCTIONS

Sample Four:

Move 50 bytes between two overlapping

strings.

MY _DATA
STRING

STRING _1
STRING_2
MY _DATA

MY_CODE

STRING _SIZE
GO:

OK:

MY_CODE

SEGMENT
DB

EQU

EQU
ENDS

SEGMENT
ASSUME
EQU

MOV

MOV

MOV

MOV

MOV

CLD

CMP

JLT

STD

ADD

ADD
REPEAT MOVS
HLT
ENDS
END

1000 DUP (?)
STRING+7
STRING+25

CS:MY_CODE, DS:MY_DATA

50 ;number of bytes to move
AX,MY_DATA ;establish data segment
DS,AX
CX,STRING_SIZE
SI,OFFSET STRING _1 ;source string
DI,OFFSET STRING _2 ;destination string
;assume a forward move
SI1,DI ;if source string comes first
OK
;...we need backwards move
SI,STRING _SIZE—1 ;set Sl and DI to
DI,STRING_SIZE—1 ;--.end of strings
STRING_-2,STRING _1 ;move the string
GO

2-42

ARCHITECTURE AND INSTRUCTIONS

DUAL FUNCTION KEYWORD/SYMBOLS

AND NOT OR SHL SHR XOR
AAA ES FLD1 FSUBRP | JNGE PUSH
AAD ESC FLDCW FTST INL PUSH
AAM F2XM1 | FLDENV | FWAIT INLE F
AAS FABS FLDL2E | FXAM JNO RCL
ADC FAC FLDL2T | FXCH JNP RCR
ADD FADD FLDLN2 | FXTRACT | JNS REP
AH FADDP FLDLG2 | FYL2X INZ REPE
AL | FALC FLDPI FYL2XPI | JO REPN
ARPL FBLD FLDZ HLT JP E
AX FBSTP FMUL IDIV JPE REPNZ
BH FCHS FMULP IMUL JPO REPZ
BL FCLEX FNCLEX | IN JS RET
BOUND | FCOM FNDISI INC JZ ROL
BP FCOMP FNENI INT LAHF ROR
BX FCOMPP | FNINIT INTO LDS SAHF
CALL FDECSTP | FNOP IRET LEA SAL
CBW FDISI FNSAVE | JA LES SAR
CH FDIV FNSTCW | JAE LOCK SBB
CL FDIVP FNSTENV | JB LODS - | SCAS
CLC FDIVR FNSTSW | JBCZ LODSB | SCAS
CLD FDIVRP FPATAN | JBE LODSW | B |
CLI FENI FPREM | JC LOOP SCAS
CLTS FFREE FPTAN JCXE LOOPE | W
CMC FIADD FRNDINT | JE LOOPNE | SI
CMP FICOM FRSTOR | JG LOOPNZ | SP
CMPS FICOMP | FSAVE JGE LOOPZ |SS
CMPSB | FIDIV FSCALE | JL MOV ST
CMPSW | FIDIVR FSQRT JLE MOVS STC

| cs FILD FST JMP MOVSB | STD

| cwp FMUL FSTCW JNA MOVSW | STI
CX FINCSTP | FSTENV | JNAE MUL STOS
DAA FINIT FSTP JNB NEG STOSB
DAS FIST FSTSW JNBE NIL STOS
DEC FISTP FSUB JNC ouT W
DH FISUB FSUBP JNE POP SUB
DI FISUBR FSUBR ING POPF TEST
DIV FLD WAIT
DL XCHG
DS XLAT
DX XLATB

?2SEG

Figure 2-14. ASM-86 Reserved Words

2-43

ARCHITECTURE AND INSTRUCTIONS

NON-CONFLICTING KEYWORDS

HANDS-OFF KEYWORDS

DA

DATE
DEBUG

EJ

EJECT

EP
ERRORPRINT
GEN
GENONLY
GO

IC
INCLUDE
LI

LIST
MACRO
MEMORY
MR

NODB
NODEBUG
NOEP
NOERRORPRINT
NOGE
NOGEN
NOLI
NOLIST
NOMACRO
NOMR
NOOBJECT
NOOJ
NOPAGING
NOPI

NOPR
NOPRINT
NOSB ‘
NOSYMBOLS
NOXR
NOXREF
OBJECT

OoJ
PAGELENGTH
PAGEWIDTH
PAGING

Pl

PL

PR

PRINT

PW
RESTORE
RS

SA

SAVE

SB

STACK
SYMBOLS
TITLE

TT

WF
WORKFILE
S

ES

XR

XREF

Figure 2-14. ASM 86 Reserved Words (Continued)

ABS
ASSUME
AT

BYTE
COMMON

DB

DD

DQ

DT
DUP
DW
DWORD
END
ENDM
ENDP
ENDS
EQ
EQU
EVEN
EXTRN
FAR
GE
GROUP
GT
HIGH
INPAGE
LABEL
LE
LENGTH
LOW
LT
MASK
MOD
MODRM
NAME

CODEMACRO

NE
NEAR
NOSEGFLX
NOTHING
OFFSET
ORG
PAGE
PARA
PREFX
PROC
PROCLEN
PTR
PUBLIC
PURGE
QWORD
RECORD
RELB
RELW
RFIX
RFIXM
FNFIX
FNFIXM
RWFIX
SEG
SEGFIX
S E G-
MENT
SHORT
SIZE
STRUC
TBYTE
THIS
TYPE
WIDTH
WORD

REF

REFERENCES
FOR INSTRUCTION SET

REF

Key to following Instruction Set Reference Pages

IDENTIFIER USED IN EXPLANATION
destination data transfer, A register or memory location that may contain data
bit manipulation operated on by the instruction, and which receives (is
replaced by) the result of the operation.
source data transfer, A register, memory location or immediate value that is

source-table

target

short-label

accumulator

port

source-string

dest-string

count

interrupt-type

optional-pop-value

external-opcode

arithmetic,

bit manipulation
XLAT

JMP, CALL
cond. transfer,
iteration control
IN, OUT

IN, OUT

string ops.

string ops.

shifts, rotates

INT

RET

ESC

used in the operation, but is not altered by the
instruction.

Name of memory translation table addressed by
register BX.

A label to which controfi is to be transferred directly, or
a register or memory location whose content is the
address of the location to which control is to be
transferred indirectly.

A label to which control is to be conditionally
transferred; must lie within —128 to +127 bytes of the
first byte of the next instruction.

Register AX for word transfers, AL for bytes.

An /0 port number; specified as an immediate value of
0-255, or register DX (which contains port number in
range 0-64k).

Name of a string in memory that is addressed by
register Sl; used only to identify string as byte or word
and specify segment override, if any. This string is
used in the operation, butis not altered.

Name of string in memory that is addressed by register
DI; used only to identify string as byte or word. This
string receives (is replaced by) the result of the
operation.

Specifies number of bits to shift or rotate; written as
immediate value 1 or register CL (which contains the
count in the range 0-255).

Immediate value of 0-255 identifying interrupt pointer
number.

Number of bytes (0-64k, ordinarily an even number) to
discard from stack.

Immediate value (0-63) that is encoded in the instruction
for use by an external processor.

REF

REFERENCES |

FOR INSTRUCTION SET

source-table

source-string

Key to Operand Types
IDENTIFIER EXPLANATION
(no operands) | No operands are written .
register An 8- or 16-bit general register
reg 16 An 16-bit general register
seg-reg A segmentregister
accumulator | Register AX or AL
immediate A constant in the range
, 0-FFFFH »

immed8 A constantin the range 0-FFH
memory An 8- or 16-bit memory
. location™
mem3 An 8-bit memory location®
mem16 A 16-bit memory location®

Name of 256-byte translate
table

Name of string addressed by
register Sl

15 14 13 12.1

CL LT Bl Tl Tl Tor]

REF

CARRY

PARITY
AUXILIARY CARRY
ZERO

SIGN

TRAP

INTERRUPT
DIRECTION
OVERFLOW

Effective Address Calculation Time

EA COMPONENTS CLOCKS*
Displacement Only 6
Base or Index Only (BX,BP,SI,DI) 5
Displacement

+ 9
Base or Index (BX,BP,S1,Dl)
Base BP + DI, BX+ Sl 7
+
Index BP +SI, BX+ DI 8
Displacement BP + DI+ DISP 11
+ BX+SI+DISP
Base
+ BP + SI+DISP 12
Index BX+ DI+ DISP

dest-string Name of string, addressed by

‘ register DI

DX Register DX

short-label A label within -128 to +127

. bytes -of the end of the

inst’ruction

near-label A label in current code
segment

far-label A label in another code

. segment)

near-proc A procedure in current code
segment

far-proc A procedure in another code
segment - .

memptri6 A word containing the-offset of
the location in the current code
segment to which control is to
be transferred™

memptr32 A doubleword containing the
offset and -the segment base
address of the location’ in
another code segment to
which control is to be trans-

‘ ferred® :

regptr16. A 16-bit- general -register
containing the offset of the
location in the current code
segment to which control is to
be transferred

repeat A string instruction repeat
prefix

M Any addressing mode—direct, register

indirect, based, indexed, or based indexed—
may be used (see section 2.8).

*Add 2 clocks for segment override

REF

REFERENCES
FOR INSTRUCTION SET

““reg’’ Field Bit Assignments:

16-Bit (w = 1) 8-Bit (w = 0) Segment
000 AX 000 AL 00 ES
001 CX 001 CL 01 CS
010 DX 010 DL 10 SS
011 BX 011 BL 11 DS
100 SP 100 AH
101 BP 101 CH
110 S| 110 DH
111 DI 111 BH

““mod’’ Field Bit Assignments:

ﬁwod XXX r/m]

REF

mod

Displacement

00
01
10
11

DISP =0*, disp-low and disp-high are absent

DISP = disp-low sign-extended to 16-bits, disp-high is absent
DISP = disp-high: disp-low
r/mistreated asa ‘‘reg’’ field

“r/m”’ Field Bit Assignments:

r/m Operand Address
000 (B)+()+DISP
001 (BX) + (DI) + DISP
010 (B)+()+DISP
011 (BP) + (DI) + DISP
100 (Sl) + DISP
101 (DIl) + DISP
110 (BP) + DISP
111 (BX) + DISP

DISP follows 2nd byte of instruction (before data if required).

*exceptif mod =00 and r/m =110 then EA = disp-high: disp-low.

B - s at EEN-
: e g -
Yo% g . . . e SEa
o .
£ ae, & . . N B
B i . f .
. : .
N . G

AA ASCIIADJUST \ A
AAA FOR ADDITION AAA

Operation: T E Flags Affected:

if ((AL) & OFH) > 9 or (AF) =1 then AF, CF.
(AL) < (AL) + 6 e OF, PF, XF, ZF undefined
(AH) < (AH) + 1
(AF) <1

(CF) < (AF)

(AL) < (AL) & OFH

Description:

AAA (ASCII Adjust for Addition) changes
the contents of register AL to.a valid unpacked
decimal number; the -high-order half-byte is
zeroed. AAA updates AF and CF; the content
of OF, PF, SF.and 'ZF is undefined following
execution off AAA, -

Encoding:

| 00110111 |

.A-AA Opérand,s _ Clocks | Transfers|Bytes| AAA Coding Example

(no operands) 4 — 1 AAA

2-45

AAD ASCIAUST AAD

Operation:

(AL) < (AH) * OAH + (AL)
(AH) <0

Description:

AAD (ASCII Adjust for Division) modifies
the numerator in AL before dividing two valid
unpacked decimal operands so that the quo-
tient produced by the division will be a valid
unpacked decimal number. AH must be zero

Encoding:

11010101 [00001010 |

Flags Affected:

PF, SF, ZF.
AF, CF, OF undefined

for the subsequent DIV to produce the correct
result. The quotient is-returned in AL, and the
remainder is returned in AH; both high-order
half-bytes are zeroed. AAD updates PF, SF
and ZF; the content of AF, CF and OF is
undefined following execution of AAD.

(no operands) 60

AAD Operands Clocks | Transfers|Bytes|AAD Coding Example

2 |AAD

2-46

AAM

Operation:

(AH) < (AL) / OAH
(AL) < (AL) % OAH

PR as __ __

Description:

AAM (ASCII Adjust for Multiply) corrects
the result of a previous multiplication of two
valid unpacked decimal operands. A valid 2-
digit ‘unpacked decimal number is derived
from the content of AH and AL and is

Encoding:

[11010100 [00001010 |

ASCII ADJUST
-~ FOR MULTIPLY

AAM

Flags Affected:

PF, SF, ZF. _
AF, CF, OF undefined

returned to AH and AL. The high-order half-
bytes of the multiplied operands must have
been OH for AAM to produce a correct result.
AAM updates PF, SF and ZF; the content of
AF, CF and OF is undefined following execu-
tion of AAM.

AAM Operands | Clocks

Transfers|Bytes| AAM Coding Example

(no operands) 83

-— 1 |AAM

2-47

AAS

Operation:
if ((AL) & OFH) >9 or (AF) =1 then
(A) (AL)-6
(AH) < (AH) -1
(AF) <1
(CF) < (AF)
(AL) < (AL) & OFH
Description:

AAS (ASCII Adjust for Subtraction) corrects
the result of a previous subtraction of two
valid unpacked decimal operands (the destina-
tlon operand must have been specified as

ASCII ADJUST
FOR SUBTRACTION

AAS

Flags Affected:

AF, CF. :
"OF, PF, SF, ZF undefined

register AL). AAS changes the content of AL
to a valid unpacked decimal number; the high-
order half-byte is zeroed: AAS updates AF
and CF; the content of OF, PF, SF and ZF is
undefined following execution of AAS.

Encoding:
(00111111]
AAS Operands Clocks Transfers| Bytes| AAS Coding Example
(no operands) : 4 1 AAS

2-48

ADC ADDWITHCARRY ADC

Operation: Flags Affected:
if (CF) =1 then (DEST) < (LSRC) AF, CF, OF, PF, SF, ZF
+ (RSRC) + 1

else (DEST) < (LSRC) + (RSRC)

Description:

ADC destination,source

ADC (Add with Carry) sums the operands,
which may be bytes or words, adds one if CF is
set and replaces the destination operand with
the result. Both operands may be signed or
unsigned binary numbers (see AAA and
DAA). ADC updates AF, CF, OF, PF, SF and
ZF. Since ADC incorporates a carry from a
previous operation, it can be used to write
routines to add numbers longer than 16 bits.

2-49

ADC ADDWITHCARRY ADC

Encoding:

Memory or Register Operand with Register Operand:

000100dw | modregr/m|

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC =EA, RSRC =REG, DEST = EA

Immediate Operand to Memory or Register Operand:

[100000sw [mod010r/m| data [dataif s:w=01]
LSRC = EA, RSRC = data, DEST = EA

Immediate Operand to Accumulator:

[0001010w| data | dataifw=1 |

if w=0then LSRC = AL, RSRC =data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

ADC Operands Clocks* |Transfers|Bytes| ADC Coding Examples
register, register — 2 | ADCAX, Sl
register, memory 9(13)+ EA 1 2-4 | ADC DX, BETA [SI]
memory, register 16(24) + EA 2 2-4 | ADC ALPHA [BX] [SI], DI
register, immediate 4 — 3-4 | ADC BX, 256
memory, immediate 17(25)+ EA 2 3-6 | ADC GAMMA, 30H
accumulator, immediate 4 - 2-3 |ADCAL,5

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-50

ADD ADDITION ADD

Operation: Flags Affected:
(DEST) < (LSRC) + (RSRC) AF, CF, OF, PF, SF, ZF
Description:

ADD destination,source

The sum of the two operands, which may be
bytes or words, replaces the destination
operand. Both operands may be signed or
unsigned binary numbers (see AAA and
DAA). ADD updates AF, CF, OF, PF, SF and
ZF.

2-51

ADD ADDITION ADD

Encoding:

Memory or Register Operand with Register Operand:

[000000dw [modregr/m]

ifd =1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Immediate Operand to Memory or Register Operand: | |

[100000sw [mod000r/m| data |dataifs:w=01]
LSRC = EA, RSRC = data, DEST = EA

|0000010w| data | dataifw=1 |

if w=0then LSRC = AL, RSRC =data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

ADD Operands Clocks* |Transfers|Bytes| ADD Coding Examples
register, register 3 — 2 | ADDCX, DX
register, memory 9(13)+ EA 1 2-4 | ADD DI, [BX].ALPHA
memory, register 16(24) + EA 2 2-4 | ADDTEMP, CL
register, immediate 4 — 3-4 |ADDCL,?2
memory, immediate 17(25)+ EA 2 3-6 | ADD ALPHA, 2
accumulator, immediate 4 — 2-3 | ADD AX, 200

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-52

AND AND LOGICAL AND

Operation: Flags Affected:
(DEST) < (LSRC) & (RSRC) CF, OF, PF, SF, ZF.
(CF)<0 AF undefined
(OF) <0

Description:

AND destination,source

AND performs the logical ‘‘and’’ of the two
operands (byte or word) and returns the result
to the destination operand. A bit'in the result
is set if both corresponding bits of the original
operands are set; otherwise the bit is cleared.

2-53

AND

Encoding:

AND LOGICAL

AND

Memory or Register Operand with Register Operand:

[001000dw | modregr/m |

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST =EA

Immediate Operand to Memory or Register Operand:

[1000000w [mod100r/m|

data

| dataifw=1 |

LSRC = EA, RSRC = data, DEST = EA

Immediate Operand to

0010010w |

data

| dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

AND Operands Clocks* |Transfers|Bytes| AND Coding Examples
register, register 3 - 2 |ANDAL,BL
register, memory 9(13)+ EA 1 2-4 | AND CX, FLAG_WORD
memory, register 16(24) + EA 2 2-4 | AND ASCII [DI], AL
register, immediate 4 — 3-4 | AND CX, OFOH
memory, immediate 17(25) + EA 2 3-6 [|AND BETA, 01H
accumulator, immediate 4 — 2-3 | AND AX, 01010000B

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-54

CALL

Operation:

if Inter-Segment then
(SP) < (SP)-2
((SP)+1:(SP)) < (CS)
(CS) < SEG
(SP)*—(SP) 2
((SP)+1:(SP)) < (IP)
(IP)<—DEST

Description:

CALL procedure-name

CALL activates an out-of-line procedure, sav-
ing information on the stack to permit a RET
(return) instruction in the procedure to
transfer control back to the instruction follow-
ing the CALL. The assembler generates a dif-
ferent type of CALL instruction depending on
whether the programmer has defined the pro-
cedure name as NEAR or FAR For control to
return prG‘perxy, the type of CALL instruction
must match the type of RET instruction that
exits from the procedure. (The potential for a
mismatch exists if the procedure and the
CALL are contained in separately assembled
programs.) Different forms of the CALL
instruction allow the address of the target pro-
cedure to be obtained from the instruction
itself (direct CALL) or from a memory loca-

tion or register referenced by the instruction -

(indirect CALL). In the following descrip-
tions, bear in mind that the processor auto-
matically adjusts IP to point to the next
instruction to be cxecuted before saving it on
the stack.

For an intrasegment direct CALL, SP (the
stack pointer) is decremented by two and IP is
pushed onto the stack. The target procedure’s
relative displacement (up to =32k) from
the: CALL instruction is then added.to the
instruction pointer. This CALL -instruction

CALL PROCEDURE

CALL

Flags Affected:

None

form is “‘self-relative”
position-independent

and appropriate for
(dynamically relocat-

“able) routines in which the CALL and its

target are moved together in the same segment.

An intrasegment indirect CALL may be made
through memory or a register. SP is decre-
mented by two; IP is pushed onto the stack.
The target procedure offset is obtained from
the memory word or 16-bit general register
referenced in the instruction and replaces IP.

For an intersegment direct CALL, SP is decre-
mented by two, and CS is pushed onto the
stack. CS is replaced by the segment word con-
tained in the instruction. SP again is
decremented by two. IP is pushed onto the
stack and replaced by the offset word in the
instruction.

For an intersegment indirect CALL (which
only may be made through memory), SP is
decremented by two, and CS is pushed onto
the stack. CS is then replaced by the content of
the second word of the doubleword memory
pointer referenced by the instruction. SP again
is decremented by two, and IP is pushed onto
the stack and replaced by the content of the
first word of the doubleword pointer refer-
enced by the instruction.

2-55

CALL CALLPROCEDURE CALL

Encoding:

Intra-segment direct:

[11101000 | disp-low [disp-high |

DEST = (EA)

Intra-Segment Indirect:

[11111111 [mod 010r/m|

DEST = (IP) + disp

Inter-Segment Direct:

[10011010 | offsetlow | offset-high |

| seglow | seg-high |
DEST = offset, SEG = seg

Inter-Segment Indirect:

[11111111 [mod011r/m]|

DEST = (EA), SEG = (EA + 2)

CALL Operands | Clocks* |Tranfers | Bytes|CALL Coding Examples
near-proc 19(23) 1 3 CALL NEAR__PROC
far-proc 28(36) 2 5 |CALLFAR_PROC
memptr 16 21(29) + EA 2 2-4 |CALL PROC__TABLE [S]]
regptr16 16(24) 1 2 |CALL AX

memptr 32 37(57)+ EA 4 2-4 [CALL [BX].TASK [SI]

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-56

CBW COMELET CBW

Operation: Flags Affected:

if (AL) <80H then (AH) < 0 else (AH) << FFH None

Description:

CBW (Convert Byte to Word) extends the sign
of the byte in register AL throughout register
AH. CBW does not affect any flags. CBW can
be used to produce a double-length (word)
dividend from a byte prior to performing byte
division.

Encoding:

110011000]

CBW Operands Clocks | Transfers|Bytes{ CBW Coding Example
(no operands) 2 - 1 |CBW

2-57

CLC CLEARCARRY CLC

Operation: fmit i e Flags Affected:
(CF)<0 CF
Description:

CLC (Clear Carry flag) zeroes the carry flag
(CF) and affects no other flags. It (and CMC
and STC) is useful in conjunction with the
RCL and RCR instructions.

Encoding:

[11111000 |

CLC Operands Clocks | Transfers Bytes CLC Coding Example

CLC

(no operands) 3 2 — 1

2-58

CLD CLEARDIRECTION CLD

Operation: Flags Affected:
(DF)< 0 DF
Description:

CLD (Clear Direction flag) zeroes DF causing
the string instructions to auto-increment the SI
and/or DI index registers. CLD does not
affect any other flags.

Encoding:

[11111100 |

CLD Operands Clocks | Transfers|Bytes|CLD Coding Example

(no operands) 2 — 1 CLD

2-59

CLI CLEAR INTERRUPT- CLI

ENABLE FLAG

Operation: - - Flags Affected:
(IF)<0 IF
Description:

CLI (Clear Interrupt-enable flag) zeroes IF.
When the interrupt-enable flag is cleared, the
8086 and 8088 do not recognize an external
interrupt request that appears on the INTR
line; in other words maskable interrupts are
disabled. A non-maskable interrupt appearing
on the NMI line, however, is honored, as is a
software interrupt. CLI does not affect any
other flags.

Encoding:

[11111010 |

CLI Operands Clocks | Transfers Bytes

CLI Coding Example

(no operands) 2 — 1

CLI

2-60

CMC COMPLEMENT CMC

CARRY FLAG
Operation: .~ Flags Affected:

if (CF) =0then (CF) <1 else (CF) <0 CF

Description:

CMC (Complement Carry flag) ‘‘toggles’’ CF
to its opposite state and affects no other flags.

Encoding:

[11110101 |

CMC Operands Clocks | Transfers|Bytes|CMC Coding Example

(no operands) 2 — 1 |CMC

2-61

CMP COMPARE CMP

Operation: - Flags Affected:
(LSRC) - (RSRC) AF, CF, OF, PF, SF, ZF

Description:

CMP destination,source

CMP (Compare) subtracts the source from the SF and ZF. The comparison reflected in the

destination, which may be bytes or words, but flags is that of the destination to the source. If
does not return the result. The operands are a CMP instruction is followed by a JG (jump
unchanged, but the flags are updated and can if greater) instruction, for example, the jump
be tested by a subsequent conditional jump is taken if the destination operand is greater

instruction. CMP updates AF, CF, OF, PF, than the source operand.

2-62

CMP COMPARE "CMP

Encoding:

Memory or Register Operand with Register Operand:

[001110dw[m0dregr/m|

ifd=1then LSRC = REG, RSRC = EA
else LSRC = EA, RSRC = REG

Immediate Operand with Memory or Register Operand:

[100000sw [mod111r/im| data [dataif s:w=01]

LSRC = EA, RSRC =data

Immediate Operand with Accumulator:

[0011110w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC =data
else LSRC = AX, RSRC = data

CMP Operands Clocks* |Transfers|Bytes| CMP Coding Examples
register, register 3 — 2 .|CMPBX, CX
register, memory 9(13) + EA — 2-4 | CMPDH, ALPHA
memory, register 9(13)+ EA — 2-4 |CMP [BP + 2], SI
register, immediate 4 - 3-4 | CMP BL, 02H '
memory, immediate 10(14) + EA - 3-6 [{CMP [BX].RADAR [DlI],

3420H

accumulator, immediate 4 - 2-3 |CMP AL, 00010000B

*b(w): whereb denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-63

CMPS

COMPARE STRING

CMPS

(BYTE OR WORD)

Operation:

(LSRC) - (RSRCQC)
if (DF)=0then
(S1) < (Sl) + DELTA
(DIl) < (DIl) + DELTA
else
(SI) < (Sh-DELTA
(Dl) < (DI)- DELTA

Description:

CMPS destination-string, source-string

CMPS (Compare String) subtracts the destina-
tion byte or word (addressed by DI) from the
source byte or word (addressed by SI). CMPS
affects the flags but does not alter either
operand, updates SI and DI to point to the
next string element and updates, AF, CF, OF,
PF, SF and ZF to reflect the relationship of the
destination element to the source element. For
example, if a JG (Jump if Greater) instruction

follows CMPS, the jump is taken if the des-

Encoding:

[1010011w]

Flags Affected:

AF, CF, OF, PF, SF, ZF

tination element is greater than the source
element. If CMPS is prefixed with REPE or
REPZ, the operation is interrupted as ‘‘com-
pare while not end-of-string (CX not zero) and
strings are equal (ZF = 1).”” If CMPS is
preceded by REPNE or REPNZ, the operation
is interrupted as ‘‘compare while not end-of-
string (CX not zero) and strings are not equal
(ZF = 0).”” Thus, CMPS can be used to find

Oy Vix 1151

matching or differing string elements.

if w=0then LSRC = (Sl), RSRC = (DI), DELTA =1
else LSRC = (SI) +1:(Sl), RSRC = (DI) +1:(Dl), DELTA =2

CMPS Operands Clocks* | Transfers | Bytes | CMPS CodingExamples
dest-string, source-string 22(30) 2 1 |CMPS BUFF1, BUFF2
(repeat) dest-string, source-string | 9+22(30)/rep | 2/rep 1 |REP COMPS ID, KEY

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-64

CONVERT WORD
CWD TO DOUBLEWORD CWD

Operation: , Flags Affected:

if (AX) <8000H then (DX) <0 None
else (DX) < FFFFH

Description:

CWD (Convert Word to Doubleword) extends
the sign of the word in register AX throughout
register DX. CWD does not affect any flags.
CWD can be used to produce a double-length
(doubleword) dividend from a word prior to
performing word division.

Encoding:

[10011001 |

CWD Operands Clocks | Transfers|Bytes|CWD Coding Example

(no operands) 5 — 1 |CWD

2-65

DECIMAL ADJUST | |
DAA FOR ADDITION DAA

Operation: ‘ Flags Affected:

if ((AL) & OFH) > 9 or (AF) =1 then AF, CF, PF, SF, ZF
AL)< (AL) + 6 OF undefined

AF) <1

AL) > 9FH or (CF) =1 then

é) < (AL) + 60H

(
(
|
if (
(AL

(CF) <1

-
<

DAA (Decimal Adjust for Addition) corrects
the result of previously adding two valid
packed decimal operands (the destination
operand must have been register AL). DAA
changes the content of AL to a pair of valid
packed decimal digits. It updates AF, CF, PF,
SF and ZF; the content of OF is undefined
following execution of DAA.

Encoding:

[00100111]

DAA Operands Clocks | Transfers|Bytes| DAA Coding Example

(no operands) 4 — 1 DAA

2-66

DECIMAL ADJUST
DAS FOR SUBTRACTION DAS

Operation: Flags Affected:
if ((AL) & OFH) > 9 or (AF) =1 then AF, CF, PF, SF, ZF.
Eﬁlﬁg -~ SIAL)—G OF undefined

AL) < (AL)-60H

if §AL) >9FH or (CF) =1 then
(CF) <1

Description:

DAS (Decimal Adjust for Subtraction) cor-
rects the result of a previous subtraction of
two valid packed decimal operands (the desti-
nation operand must have been specified as
register AL). DAS changes the content of AL
to a pair of valid packed decimal digits. DAS
updates AF, CF, PF, SF and ZF; the content
of OF is undefined following execution of
DAS.

Encoding:

00101111 |

DAS Operands Clocks | Transfers|Bytes| DAS Coding Example

(no operands) 4 — 1 DAS

2-67

DEC

Operation:

(DEST) < (DEST) -1

Description:

DECREMENT

DEC

Flags Affected:
AF, OF, PF, SF, ZF

DEC (Decrement) subtracts one from the
destination operand. The operand may be a
byte or a word and is treated as an unsigned
binary number (see AAA and DAA). DEC
updates AF, OF, PF, SF and ZF; it does not

affect CF.

Encoding:

Memory or Register Operand:

[1111111w [mod 001 r/m]

DEST=EA

Register Operand:

| 01001reg |

DEST = REG

DEC Operands Clocks* |Transfers|Bytes|DEC Coding Example
reg16 2 — 1 DEC AX
reg8 3 — - 2 |DECAL
memory 15(23) + EA 2 2-4 |DEC ARRAY [SI]

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for.word operands.

2-68

DIV

Operation:

(temp) < (NUMR)

if (temp) / (DIVR) > MAX then the
following, in sequence
(QUO), (REM) undefined

(SP) < (SP) -2
((SP)+1:(SP)) < FLAGS
(IF) <0

(TF) <0

(SP) < (SP) -2

g(sp) +1:(SP)) < (CS)

memory locations 2and 3
P) < (SP)-2

((SP)+1:(SP)) < (IP)

(IP) < (0)i.e., the contents of
locations 0 and 1

else

(QUO) < (temp) / (DIVR), where
/ is unsigned division

(REM) < (temp) % (DIVR) where
% is unsigned modulo

CS) < (2)i.e., the contents of
S

Description:

DIV source

DIV (divide) performs an unsigned division of
the accumulator (and its extension) by the
source operand. If the source operand is a
byte, it is divided into the double-length divi-
dend'assumed to be in registers AL -and AH.
The single-length quotient is returned in AL,
and the single-length remainder is returned in
AH. If the source operand is a word, it is
divided into. the double-length dividend in

registers AX and DX. The single-length quo-

DIVIDE

DIV

Flags Affected:

AF, CF, OF, PF, SF, ZF undefined

tient is returned in AX, and the single-length
remainder is returned in DX. If the quotient
exceeds the capacity of its destination register
(FFH for byte source, FFFFFH for word
source), as when division by zero is attempted,
a type O interrupt is generated, and the quo-
tient and remainder are- undefined. Non-
integral quotients are truncated to integers.
The content of AF, CF, OF, PF, SF and ZF is
undefined following execution of DIV.

2-69

DIV

Encoding:

[1111011w [mod110r/m|

DIVIDE

DIV

if w=0then NUMR = AX, DIVR=EA, QUO = AL, REM = AH, MAX = FFH
else NUMR = DX:AX, DIVR = EA, QUO = AX, REM = DX, MAX = FFFFH

DIV Operands Clocks* |Transfers|Bytes|DIV Coding Example
reg8 80-90 — 2 |DIVCL
reg16 144-162 — 2 |DIVBX
mem38 (86-96) + EA 1 2-4 DIV ALPHA
mem16 (154-172) + EA 1 2-4 |DIVTABLE [SI]

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-70

ESC ESCAPE ESC

Operation: TR Flags Affected:
if mod # 11 then data bus < (EA) None
Description:

The ‘ESC (Escape) instruction provides a
mechanism by which = other ' processors
(coprocessors) may receive their instructions
from the 8086 or 8088 instruction stream and
make use of the 8086 or 8088 addressing
modes. The CPU (8086 or 8088) does a no
operation (NOP) for the ESC instruction other
than to access a memory operand and place it
on the bus.

Encoding:
| 11011x | modxrim |
ESC Operands Clocks* | Transfers|Bytes| ESC Coding Example
immediate, memory | 8(12)+EA 1 2-4 |ESC6,ARRAY [SI]]
immediate, register 2 — 2 |ESC20,AL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-71

HLT HALT HLT

Operation: . : Flags Affected:
None None
Description:

HLT (Halt) causes the 8086, 8088 to enter the receipt of a maskable interrupt request on
halt state. The processor leaves the halt state INTR. HLT does not affect any flags. It may

upon activation of the RESET line, upon be used as an alternative to an endless software
receipt of a non-maskable interrupt request on loop in situations where a program must wait
NMI, or, if interrupts are enabled, upon for an interrupt.
Encoding:
111110100 |

HLT Operands Clocks | Transfers|Bytes| HLT Coding Example

(nooperands) 2 — 1 HLT

2-72

IDIV

Operation:

(temp) < (NUMR)

if (temp) / (DIVR) >0 and (temp)
/ (DIVR) > MAX

or (temp) / (DIVR) <0 and (temp)
/ (DIVR) < 0-MAX-1then
(QUO), (REM) undefined
(SP) < (SP)-2
((SP)+1:(SP)) <« FLAGS
(IF) <0
(TF)<0
(SP) < (SP)-2
((SP)+1:(SP)) < (CS)
(CS) < (2)
(SP) < (SP) -2
((SP)+1:(SP)) < (IP)
(IP) < (0)

else
(QUO) <« (temp) / (DIVR), where
/ is signed division
(REM) < (temp) % (DIVR) where
% is signed modulo

Description:

IDIV source

IDIV (Integer Divide) performs a signed divi-
sion of the accumulator (and its extension) by
the source operand. If the source operand is a
byte, it is divided into the double-length divi-
dend assumed to be in registers AL and AH;
the single-length quotient is returned in AL,
and the single-length remainder is returned in
AH. For byte integer division, the maximum
positive quotient is +127 (7FH) and the
minimum negative quotient is —127 (81H). If
the source operand is a word, it is divided into
the double-length dividend in registers AX and
DX; the single-length quotient is returned in

INTEGER DIVIDE

IDIV

Flags Affected:

2-73

AF, CF, OF, PF, SF, ZF undefined

AX, and the single-length remainder is
returned in DX. For word integer division, the
maximum positive quotient is +32,767
(7FFFH) and the minimum negative quotient
is —32,767 (8001H). If the quotient is positive
and exceeds the maximum, or is negative and
is less than the minimum, the quotient and
remainder are undefined, and a type O inter-
rupt is generated. In particular, this occurs if
division by 0 is attempted. Nonintegral quo-
tients are truncated (toward 0) to integers, and
the remainder has the same sign as the divi-
dend. The content of AF, CF, OF, PF, SF and
ZF is undefined following IDIV.

IDIV

Encoding:

INTEGER DIVIDE 1DIV

[1111011w [mod111r/m|

if w=0then NUMR = AX, DIVR=EA, QUO = AL, REM = AH, MAX =7FH
else NUMR = DX:AX, DIVR=EA, QUO = AX, REM = DX, MAX = 7FFFH

IDIV Operands Clocks* Transfers. | Bytes | IDIV Coding Example

reg8 101-112 — 2 IDIV BL

reg16 165-184 — 2 IDIV CX

mem3 (107-118) + EA 1 2-4 |IDIV DIVISOR__BYTE [SI]
mem16 (175-194) + EA 1 2-4 [IDIV [BX].DIVISOR_WORD

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-74

IMUL

Operation:

(DEST) < (LSRC) * (RSRC) where
* is signed multiply

if (ext) = sign-extension of (LOW)
then (CF) <0

eise (CF) < 1;

(OF) < (CF)

Description:

IMUL source

IMUL (Integer Multiply) performs a signed
multiplication of the source operand and the
accumulator. If the source is a byte, then it is
multiplied by register AL, and the double-
length result is returned in AH and AL. If the
source is a word, then it is multiplied by
register AX, and the double-length result is
returned in registers DX and AX. If the upper

Encoding:

[1111011w [mod101r/m|

INTEGER MULTIPLY

IMUL

Flags Affected:

CF, OF
AF, PF, SF, ZF undefined

half of the result (AH for byte source, DX for
word source) is not the sign extension of the
lower half of the result, CF and OF are set;
otherwise they are cleared. When CF and OF
are set, they indicate that AH or DX contains
significant digits of the result. The content of
AF, PF, SF and ZF is undefined following exe-
cution of IMUL.

if w=0then LSRC = AL, RSRC = EA, DEST = AH, EXT = AH, LOW = AL
else LSRC = AX, RSRC = EA, DEST = DX:AX, EXT = DX, LOW = AX

IMUL Operands| Clocks* | Transfers|Bytes|IMUL Coding Example

regd 80-98 — 2 |IMULCL

reg16 128-154 — 2 |IMULBX

mem38 (86-104) + EA 1 - 2-4 |[IMULRATE_BYTE

mem16 (138-164) + EA 1 2-4 |IMUL RATE_WORD [BP] [DI]

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-75

IN

Operation:
(DEST) < (SRC)

Description:

IN accumulator,port

IN transfers a byte or a word from an input
port to the AL register or the AX register,
respectively. The port number may be speci-
fied either with an immediate byte constant,

INPUT BYTE OR WORD

IN

Flags Affected:

None

255, or with a number previously placed in the
DX register, allowing variable access (by
changing the value in DX) to ports numbered
from 0 through 65,535.

allowing access to ports numbered O through
Encoding:
Fixed Port:

[1110010w]| port |

if w=0then SRC = port, DEST = AL
else SRC = port+1:port, DEST = AX

Variable Port:

[1110110w |

if w = 0 then SRC = (DX), DEST = AL
else SRC = (DX) +1:(DX), DEST = AX

IN Operands - | Clocks* | Transfers|Bytes|IN Coding Example
accumulator, immed8 | '10(14) 1 2 |INAL,OFFEAH
| accumulator, DX -8(12) 1 1 |IN AX, DX

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the numberof clock cycles for word operands.

2-76

INC INCREMENT INC

Operation: Flags Affected:
(DEST) < (DEST) + 1 AF, OF, PF, SF, ZF
Description:

INC destination

INC (Increment) adds one to the destination
operand. The operand may be a byte or a word
and is treated as an unsigned binary number
(see AAA and DAA). INC updates AF, OF,
PF, SF and ZF; it does not affect CF.

Encoding:

" Memory or Register Operand:

[1111111w [mod000r/m|
DEST =EA

' Régiste’r Operahd:

| 01000reg |
DEST = REG

INC Operands Clocks* |Transfers|Bytes|INC Coding Example

regi6 2 — 1 INC CX
reg8 3 — 2 |INCBL
memory 15(23) + EA 2 2-4 |INC ALPHA [DI] [BX]

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-77

INT

Operation:

(SP) < (SP)-2
(fg)P) +01 :(SP)) < FLAGS

(
(
(SP) < (SP) -2

((SP)+1:(SP)) < (CS)
(CS) < (TYPE* 4 + 2)
(SP) < (SP) -2

((SP)+1:(SP)) < (IP)
(IP) < (TYPE * 4)

Description:

INT interrupt-type

INT (Interrupt) activates the interrupt pro-
cedure specified by the interupt-type operand.
INT decrements the stack pointer by two,
pushes the flags onto the stack, and clears the
trap (TF) and interrupt-enable (IF) flags to
disable single-step and maskable interrupts.
The flags are stored in the format used by the
PUSHEF instruction. SP is decremented again
by two, and the CS register is pushed onto the
stack. The address of the interrupt pointer is
calculated by multiplying interrupt-type by
four; the second word of the interrupt pointer
replaces CS. SP again is decremented by two,
and IP is pushed onto the stack and is replaced

INTERRUPT

INT

Flags Affected:

2-78

IF, TF

by the first word of the interrupt pointer. If
interrupt-type = 3, the assembler generates a
short (1 byte) form of the instruction, known
as the breakpoint interrupt.

Software interrupts can be used as ‘‘supervisor
calls,”” i.e., requests for service from an
operating system. A different interrupt-type
can be used for each type of service that the
operating system could supply for an applica-
tion program. Software interrupts also may be
used to check out interrupt service procedures
written for hardware-initiated interrupts.

INT INTERRUPT INT

Encoding:

11100110V | typeifv=1 |

ifv=0thenTYPE=3
else TYPE = type

INT Operands Clocks* | Transfers|Bytes [INT Coding Example

immed8 (type=3) | 52(72) 5 1 |INT3
immed8 (type #3) | 51(71) 5 2 |INT67

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-79

INTO

Operation:

Description:

INTO (Interrupt on Overflow) generates a
software interrupt if the overflow flag (OF) is
set; otherwise control proceeds to the follow-
ing instruction without activating an interrupt
procedure. INTO addresses the target inter-
rupt procedure (its type is 4) through the inter-

INTERRUPT ON
OVERFLOW

INTO

Flags Affected:

None

rupt pointer at location 10H; it clears the TF
and IF flags and otherwise operates like INT.
INTO may be written following an arithmetic
or logical operation to activate an interrupt
procedure if overflow occurs.

Encoding:

[11001110 |

INTO Operands Clocks* | Transfers|Bytes| INTO Coding Example
(no operands) 53(73) or 4 1 INTO

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-80

IRET INTERRUPT RETURN IRET

OperatiOn: | Flags Affected:
(IP) < ((SP)+1:(SP)) All
(SP)<(SP) +2
(CS) < ((SP) +1:(SP))
(SP) < (SP) + 2

FLAGS < ((SP) + 1:(SP))
(SP) < (SP) + 2

Description:

IRET (Interrupt Return) transfers control
back to the point of interruption by popping
IP, CS and the flags from the stack. IRET thus
affects all flags by restoring them to previously
saved values. IRET is used to exit any inter-
rupt procedure, whether activated by hard-
ware or software.

Encoding:

[11001111 |

IRET Operands Clocks* | Transfers|Bytes|IRET Coding Example
(no operands) 32(44) 3 1 |[IRET

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-81

JA JUMPONABOVE JA

JNBE JUMngé\lé)JABLELOW JNBE

Operation: Flags Affected:
if (CF) & (ZF) =0 then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

Jump on Above (JA)/Jump on Not Below or
Equal (JNBE) transfers control to the target
operand (IP + displacement). If the conditions
(CF and ZF = 0) are above/not below or equal
to the tested value.

Encoding:

01110111 | disp |

JA/JNBE Operands | Clocks | Transfers|Bytes|JA Coding Example

short-label | 16ord | — 2 |JAABOVE

| JNBE Coding Example

|JNBE ABOVE

2-82

JAE

JUMP ON ABOVE

OR EQUAL
JNB JUMPONNOTBELOW JNB

JAE

Operation: Flags Affected:
if (CF)=0then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:
JAE (Jump on Above or Equal)/JNB (Jump
on Not Below) transfers control to the target
operand (IP + displacement) if the condition
(CF =0) is above or equal/not below the tested
value.
Encoding:
01110011] disp |
JAE/JNB Operands Clocks | Transfers| Bytes| JAE Coding Example
short-label 16or4 — 2 |JAEABOVE_EQUAL

2-83

JB JUMPONBELOW B

INAE P ONNCT, INAE

Operation: ~ Flags Affected:
if (CF) =1 then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JB (Jump on Below)/JNAE (Jump on Not
Above or Equal) transfers control to the target
operand (IP + displacement) if the condition
(CF = 1) is below/not above or equal to the
tested value.

Encoding:

01110010 | disp |

JB/JNAE Operands | Clocks | Transfers |Bytes |JB Coding Example
short-label o 16 or4 — | 2 |JBBELOW

2-84

| JUMP ON BELOW
JBE OR EQUAL JBE

JNA NOT ABOVE | JNA

Operation: Flags Affected:
IF (CF) or (ZF) =1 then None
(IP)<(IP) + disp (sign-extended
to 16-bits)
Description:

JBE (Jump on Below or Equal)/JNA (Jump
on Not Above) transfers control to the target
operand (IP + displacement) if the conditions
(CF or ZF = 1) are below or equal/or not
above the tested conditions.

Encoding:

[01110110 | disp |

JBE/JNA Operands 'Clvocks Transfers |Bytes [JNA Coding Example

short-label 16 or 4 — 2 |JNANOT_ABOVE

-2-85

JC

JUMP ON CARRY

JC

Operation: Flags Affected:
if (CF) =1 THEN None
(IP) < (IP) + disp (sign-extended
to 16-bits) .
Description:
JC (Jump on Carry) transfers control to the
target operand (IP + displacement) on the con-
dition CF = 1.
Encoding:
[01110010] disp |
JC Operands Clocks | Transfers Bytes | JC Coding Example
short-label 16 or4 — 2 JC CARRY__SET

2-86

JCXZ __JUMPIFCX JCXZ

REGISTER ZERO
Op:e.ration: o i ';"”Flai‘g:#;'Af’fected:

if (CX)=0then None
(IP) < (IP) + disp (sign-extended
to 16-bits)

Description:

JCXZ short-label

JCXZ (Jump if CX Zero) transfers control to
the target operand if CX is 0. This instruction
is useful at the beginning of a loop to bypass
the loop if CX has a zero value, i.e., to execute
the loop zero times.

Encoding:

[11100011 [disp |

JCXZ Operands Clocks | Transfers|Bytes|JCXZ Coding Example

short-label | 18orb - 2 |JCXZCOUNT__DONE

2-87

JE
JZ

JUMP ON EQUAL JE
JUMP ON ZERO JZ

Operation: Flags Affected:
if (ZF) =1 then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:
JE (Jump on Equal)/JZ (Jump on Zero)
transfers control to the target operand (IP +
displacement) if the condition (ZF = 1) is
equal/zero on the tested value.
Encoding:
01110100] disp |
JE/JZ Operands Clocks | Transfers|Bytes|JZ Coding Example
short-label 16o0r4 — 2 |(JZZERO

2-88

JG JUMP ON GREATER JG

INLE gsSoreaua. INLE

Operation: Flags Affected:
if (SF) = (OF)) & ((ZF) = 0) then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JG (Jump on Greater Than)/JNLE (Jump on
Not Less Than or Equal) transfers control to
the target operand (IP + displacement) if the
conditions ((SF XOR OF) or ZF = 0) are
greater than/not less than or equal to the
tested value.

Encoding:

[01111111] disp

JG/JNLE Operands | Clocks | Transfers|Bytes|JG Coding Example
short-label 16 or 4 — 2 |JG GREATER

2-89

JUMP ON GREATER
JGE PO anE JGE

JNL JUMP ON NOT LESS JNL

Operation: Flags Affected:

if (SF)=(OF)0then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JGE (Jump on Greater Than or Equal)/JNL
(Jump on Not Less Than) transfers control to
the target operand (IP + displacement) if the
condition (SF XOR OF = 0) is greater than or
equal/not less than the tested value.

Encoding:

[01111101 | disp |

JGE/JNL Operands Clocks | Transfers|Bytes|JGE Coding Example

shortflabel 16or4 — 2 |JGEGREATER_EQUAL

2-90

JL JUMP ON LESS JL
JNGE _ _JUMPONNOT JNGE

GREATER OR EQUAL

Operation: Flags Affected:
if (SF) # (OF) then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JL (Jump on Less Than)/JNGE (Jump on Not
Greater Than or Equal), transfers control to
the target operand if the condition (SF XOR
OF = 1) is less than/not greater than or equal
to the tested value.

Enc&diné:

[01111100] disp |

JL/JNGE Operands Clocks | Transfers|Bytes|JL Coding Example
short-label 16 or 4 — 2 |JLLESS

2-91

JLE gronEss JLE

JNG JUMPONNOTGREATER JNG

Operation: Flags Affected:
if (SF) # (OF)) or ((ZF) =1) then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JLE (Jump on Less Than or Equal to)/JNG
(Jump on Not Greater Than) transfers control
to the target operand (IP + displacement) if
the conditions tested ((SF XOR OF) or ZF =1)
are less than or equal to/not greater than the
tested value.

Encoding:

01111110 | disp |

JLE/JNG Operands Clocks | Transfers|Bytes| JNG Coding Example
short-label ‘ 16 or4 — 2 |JNG NOT_GREATER

2-92

JMP JUMP UNCONDITIONALLY JMP

Operation:

if Inter-Segment then (CS) < SEG
(IP) < DEST

Description:

JMP target

JMP unconditionally transfers control to the
target location. Unlike a CALL instruction,
JMP does not save any information on the
stack; no return to the instruction following
the JMP is expected. Like CALL, the address
of the target operand may be obtained from
the instruction itself (direct JMP), or from
memory or a register referenced by the instruc-
tion (indirect JMP). '

An intrasegment direct JMP changes the

instruction pointer by adding the relative
displacement of the target from the JMP
instruction. If the assembler can determine
that the target is within 127 bytes of the JMP,
it automatically generates a two-byte instruc-
tion form called a SHORT JMP; otherwise, it
generates a NEAR JMP that can address a
target within +32k. Intrasegment direct JMPS

are self-relative and appropriate in position-

Flags Affected:

None

independent . (dynamically relocatable)
routines in which the JMP and its target are
moved together in the same segment.

An intrasegment:indirect JMP may .be made
either ‘through memory or.a 16-bit ‘general
register. In the first case, the word content
referenced by the: instruction replaces the

_instruction pointer. In the second case, the
.new IP value is taken from the register named

in the instruction. -

An intersegment direct IJMP replaceé IP and
CS with values contained in the instruction.

An intersegment- indirect JMP may be made
only through memory. The first word of the
doubleword pointer referenced by the instruc-
tion replaces TP and the second word replaces
CS.

2-93

JMP JUMPUNCONDITIONALLY JMP

Encoding:

Intra-Segment Direct:

[11101001 | disp-low [disp-high |
DEST = (IP) + disp

Intra-Segment Direct Short:

[11101011 | disp |
DEST = (IP) + disp sign extended to 16-bits

Intra-Segment Indirect:

[11111111 [mod100r/m]|
DEST = (EA)

Inter-Segment Direct:

11101010 | offset-low | offset-high |-

| seg-low | seg-high |
DEST = offset, SEG = seg

Inter-Segment Indirect:

[11111111 [mod101r/m]|
DEST = (EA), SEG = (EA + 2)

JMP Operands | Clocks | Transfers | Bytes | JMP Coding Example

short-label 15 — 2 JMP SHORT

near-label 15 — 3 JMP WITHIN_SEGMENT
far-label 15 — 5 JMP FAR__LABEL
memptri16 18+ EA — 2-4 | JMP [BX].TARGET
regptr16 11 — 2 JMP CX

memptr32 24+ EA 2-4 | JMP OTHER.SEG [SI]

2-94

JNC JUMPONNOTCARRY JNC

Operation: Flags Affected:
if (CF)=0THEN None
(IP) < (IP) + disp (sign-extended
to 16-bits) -
Description:
JNC (Jump on Not Carry) transfers control to
the target operand (IP + displacement) on the
condition CF =0.
Encoding:
|01110011 | disp |
JNC Operands | Clocks | Transfers | Bytes | JNC Coding Example
short-label 16o0r4 — 2 JNC NO__CARRY

2-95

JNE JUMPONNOTEQUAL JNE
JNZ JUMPONNOTZERO JNZ

Operation: Flags Affected:
if (ZF)=0then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JNE (Jump on Not Equal to)/ JNZ (Jump on
Not Zero) transfers control to the target
operand (IP + displacement) if the condition
tested (ZF = 0) is true.

Encoding:

101110101] disp |

JNE/JNZ Operands | Clocks | Transfers|Bytes|JNE Coding Example

short-label 16or4 — 2 |JNENOT_EQUAL

2-96

JNO

Operation:

if (OF) =0 then

JUMP ON NOT

OVERFLOW
Flags Affected:

None

(IP) < (IP) + disp (sign-extended

to 16-bits)

Description:

JNO (Jump on Not Overflow) transfers con-
trol to the target operand (IP + displacement)
if the condition tested (OF = 0) is true.

JNO

Encoding:
[01110001 |]
JNO Opefands . Clocks | Transfers|Bytes|JNO Coding Example
short-label | 16 0r 4 - 2 |[JNONO__OVERFLOW

2-97

JNS JUMPONNOTSIGN JNS

Operation: " Flags Affected:
if (SF) =0then | None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JNS (Jump on Not Sign) transfers control to
the target operand (IP + displacement) when
the tested condition (SF = 0) is true.

Encoding:
01111001 [disp]
JNS Operands ‘Clocks | Transfers|Bytes| JNS Coding Example
short-label - 16 or 4 — 2 |JNS POSITIVE

2-98

JNP JUMPON NOTPARITY
JPO JUMPON PARITY ODD

JNP
JPO

Operation: Flags Affected:
if (PF)=0then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:
JNP (Jump on Not Parity)/JPO (Jump on
Parity Odd) transfers control to the target
operand if the condition tested (PF = 0) is true.
Encoding:
[01111011] disp
JNP/JPO Operands Clocks | Transfers| Bytes| JPO Coding Example
short-label 16 or4 — 2 |JPOODD__PARITY

2-99

JO JUMPONOVERFLOW JO

Operation: . Flags Affected:
if (OF) =1then None
(IP) < (IP) + disp (S|gn extended
to 16-bits)

Description:

JO (Jump on Overflow) transfers control to
the target operand (IP + displacement) if the
tested condition (OF = 1) is true.

Encoding:
[01110000] disp |
JO Operands Clocks | Transfers| Bytes{JO Coding Example
short-label 16 or 4 — | 2 |JOSIGNED__OVERFLOW

2-100

JP JUMP ON PARITY JP
JPE JUMPONPARITYEQUAL JPE

Operation: Flags Affected:
if (PF)=1then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JP (Jump on Parity)/JPE (Jump on Parity
Equal) transfers control to the target operand
(IP + displacement) if the condition tested (PF
=1)is true.

Encoding:

01111010 disp

JP/JPE Oper_énds Clocks | Transfers|Bytes|JPE Coding Example

short-label " 16 or4 — 2 |JPEEVEN__PARITY .

2-101

JS JUMP ON SIGN

Operation: | Flags Affected:
if (SF)=1then , None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JS (Jump on Sign) transfers control to the
target operand (IP + displacement) if the
tested condition (SF = 1) is true.

JS

Encoding:
01111000 | disp |
JS Operands Clocks | Transfers|Bytes|JS Coding Example
short-label 16 or 4 — 2 |JSNEGATIVE

2-102

LAHF LoRBEgsTean LAHF

Operation: | ~ Flags Affected:
(AH) < (SF):(ZF):X:(AF):X:(PF):X:(CF) None
Description:

LAHF (load register AH from flags) copies
SF, ZF, AF, PF and CF (the 8080/8085 flags)
into bits 7, 6, 4, 2 and 0, respectively, of
register AH. The content of bits 5, 3 and 1 is
undefined; the flags themselves are not
affected. LAHF is provided primarily for con-
verting 8080/8085 assembly language pro-
grams to run on an 8086 or 8088. ,

Encoding:

[10011111]

LAHF Operands Clocks | Transfers

Bytes

LAHF Coding Example

(no operands) v 4 —_

LAHF

2-103

LDS LOAD POINTER USING DS DS

Operation:

(REG) < (EA)
(DS) < (EA + 2)

Description:

LDS destination,source

LDS (load pointer using DS) transfers a 32-bit
pointer variable from the source operand,
which must be a memory operand, to the des-
tination operand and register DS. The offset
word of the pointer is transferred to the des-
tination operand, which may be any 16-bit
general register. The segment word of the

Encoding:

11000101 [modregr/m]

if mod = 11 then undefined operation

Flags Affected:

None

pointer is transferred to register DS. Specify-
ing SI as the destination operand is a conve-
nient way to prepare to process a source string
that is not in the current data segment (string
instructions assume that the source string is
located in the currént data segment and that SI
contains the offset of the string).

LDS Operands Clocks

Transfers|Bytes|LDS Coding Example

24+EA

reg16, mem32

2 2-4

LDS SI,DATA.SEG [DI] |

©2-104

-~ LOAD EFFECTIVE ,
LEA ADDRESS LEA

Operation: - Flags Affected:
(REG) < EA None
Description:

LEA destination,source

LEA (load effective address) transfers the off- register. LEA does not affect any flags. The

set of the source operand (rather than -its XLAT and string instructions assume that cer-
value) to the destination operand. The source tain registers point to operands; LEA can be
operand must be a memory operand, and the used to load these registers (e.g., loading BX
destination operand must be a 16-bit general with the address of the translate table used by

the XLAT instruction).

Encoding:

[10001101 [modregr/m |

if mod =11 then undefined operation

LEA Operands Clocks | Transfers|Bytes|LEA Coding Example
reg16, mem16 2+EA — 2-4 |LEA BX,[BP][DI]

2-105

LES LOAD POINTER USING ES

2

Operation:

(REG) < (EA)
(ES) < (EA + 2)

Description:

LES destination,source

LES (load pointer using ES) transfers a 32-bit
pointer variable from the source operand,
which must be a memory operand, to the des-
tination .operand and register ES. The offset
word of the pointer is transferred to the des-
tination operand, which may be any 16-bit
general register. The segment word of the

Encoding:

| 11000100 lmodregr/m

if mod =11 then undefined operation

LES

Flags Affected:

None

pointer is transferred to register ES. Specifying
DI as the destination operand is a convenient
way to prepare to process a destination string
that is not in the current extra segment. (The
destination string must be located in the extra
segment, and DI must contain the offset of the
string.)

LES Operands Clocks

Transfers |Bytes|LES Coding Example

reg16, mem32 - 24+ EA

2-4 |LES DI,[BX].TEXT__BUFF

2-106

LOCK

Operation:

None

Description:

LOCK is a one-byte prefix that causes the 8088
(configured in maximum mode) to assert its
bus LOCK signal while the following instruc-
tion executes. LOCK does not affect any flags.

The instruction most useful in this context is
an exchange register with memory. A simple
software lock may be implemented with the
following code sequence:

Encoding:

[11110000 |

LOCK THE BUS

LOCK

Flags Affected:

None

Check: MOV AL1 ;set AL to 1 (implies locked)

LOCK XCHG Sema,AL ;testand set lock
TEST AL,AL ;set flags based on AL
JNZ Check ;retry if lock already set

MOV Sema,0 ;clear the lock when done

The LOCK prefix may be combined with the
segment override and/or REP prefixes.

LOCK Operands | Clocks

Transfers|Bytes

LOCK Coding Example

(no operands) 2

1 LOCK XCHG FLAG,AL

2-107

LODS LOADSTRING LODS

(BYTE OR WORD)
Operation: Lot Flags Affected:

(DEST) < (SRC) None
if (DF) =0then (SI) < (Sl) + DELTA
else (Sl) < (Sl) - DELTA

Description:

LODS source-string

LODS (Load String) transfers the byte or word overwrit‘teh by each repetition, and only the

string element addressed by SI to register AL last element would be retained. However,
or AX, and updates SI to point to the next ele- LODS is very useful in software loops.as part
ment in the string. This instruction is not ordi- of a more complex string function built up
narily repeated since the accumulator would be from string primitives and other instructions. -
Encoding:

[1010110w |

if w=0then SRC = (Sl), DEST = AL, DELTA =1
else SRC = (Sl) +1:(Sl), DEST = AX, DELTA=2

LODS Operands Clocks* |Transfers|Bytes|LODS Coding Example

source-string ‘ 12(16) 1 1 LODS CUSTOMER__NAME
(repeat) source-string |9+13(17)/rep| 1/rep | 1 REP LODS NAME ,

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-108

LOOP LOOR:. LOOP

Operation: Flags Affected:

(CX) < (CX) -1 None
if (CX) # 0 then
(IP) < (IP) + disp (sign-extended
to 16-bits) .

Description:

LOOP short-label

LOOP decrements CX by 1 and transfers con-
trol to the target operand if CX is not 0;
otherwise the instruction following LOOP is
executed.

Encoding:

[11100010] disp |

5 LOOP Operands Clocks | Transfers|Bytes|LOOP Coding Example

short-label : 1715 — 2 |LOOP AGAIN

2-109

LOOPE

LOOP WHILE

LOOPE

EQUAL

LOOPZ

LOOP WHILE

LOOPZ

ZERO

Operation:

(CX) < (CX) -1
if (ZF) =1 and (CX) # 0 then
(IP) < (IP) + disp (sign-extended
to 16-bits)

Description:

LOOPE/LOOPZ short-label

LOOPE and LOOPZ (Loop While Equal and
Loop While Zero) are different mnemonics for
the same instruction (similar to the REPE and
REPZ repeat prefixes). CX is decremented by
1, and control is transferred to the target
operand if CX is not 0 and if ZF is set;

ntharwice tha inctrnetinn fallawine T ONDPE /
OuiCiwise uil INSruCuln IOulOWINE L uuUr o/

LOOPZ is executed.

Encoding:

[11100001 | disp |

Flags Affected:

None

LOOPE/LOOPZ Operands| Clocks | Transfers | Bytes| LOOPE Coding Example

short-label 18 0or6

— 2 |LOOPE AGAIN

2-110

LOOPNZ LOQPWHILE | OOPNZ

LOOPNE LOOPWHILE | QOPNE

Operation: Flags Affected:

(CX) < (CX) -1 None
if (ZF)=0and (CX) # 0 then
(IP) < (IP) + disp (sign-extended
to 16-bits)

Description:

LOOPNE/LOOPNZ short-label

LOOPNE and LOOPNZ (Loop While Not
Equal and Loop While Not Zero) are also
synonyms for the same instruction. CX is
decremented by 1, and control is transferred to
the target operand if CX is not 0 and if ZF is
clear; otherwise the next sequential instruction
is executed.

Encoding:

11100000] disp |

LOOPNE/LOOPNZ Operands|Clocks| Transfers| Bytes| LOOPNE Coding Example

short-label 190r5 - 2 |LOOPNE AGAIN

2-111

MOV MOVE(BYTEORWORD) MOV

Operation: Flags Affected:
(DEST) < (SRC) | None
Description:

MOV destination,source

MOVE transfers a byte or a word from the
source operand to the destination operand.

Encoding:

Memory or Register Operand to/from Register Operand:

[100010dw [modregr/m|

ifd=1then SRC=EA, DEST =REG
else SRC=REG, DEST=EA

Immediate Operand to Memory or Register Operand:

[1100011w [mod000r/m| data | dataif w=1

SRC =data, DEST = EA

Immediate Operand to Register:

[1T011wreg | data | dataifw=1 |

SRC = data, DEST = REG

2-112

MOV MOVE (BYTE OR WORD)

Encoding:

Memory Operand to Accumulator:

[1010000w [addrlow [addr-high |

if w=0then SRC = addr, DEST=AL
else SRC = addr+1:addr, DEST = AX

Accumulator to Memory Operand:

[1010001w] addrlow [addr-high |

if w=0then SRC = AL, DEST = addr
else SRC = AX, DEST = addr + 1:addr

Memory or Register Operand to Segment Register:

10001110 [mod0regr/m|

if reg # 01 then SRC = EA, DEST = REG
else undefined operation

Segment Register to Memory or Register Operand:

MOV

10001100 [mod0regr/m|
SRC =REG,DEST=EA

MOV Operands Clocks* |Transfers|Bytes| MOV Coding Example
memory, accumulator| 10(14) 1 3 | MOV ARRAY [SH], AL
accumulator, memory 10(14) 1 3 [MOV AX, TEMP_RESULT
register, register 2 — 2 | MOV AX,CX
register, memory 8(12)+ EA 1 2-4. | MOV BP, STACK__TOP
memory, register 9(13)+ EA 1 2-4- | MOV COUNT [DI], CX
register, immediate 4 — 2-3 |MOVCL, 2
memory, immediate - | 10(14)+ EA 1 3-6 | MOV MASK [BX] [SI], 2CH
seg-reg, reg16 2 — MOV ES, CX
seg-reg, mem16 (12)+EA 1 2-4 | MOV DS, SEGMENT BASE
reg16, seg-reg 2 — 2 |MOVBP,SS
memory, seg-rég - 9(13)+ EA 1 2-4 | MOV [BX] SEG__SAVE, CS

*b(w):*where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-113

MOVS MOVESTRING =~ MOVS

Operation: Flags Affected:
(DEST) < (SRC) ~ None
Description:

MOVS destination-string, source-string

MOVS (Move String) transfers a byte or a
word from the source string (addressed by SI)
to the destination string (addressed by DI) and
updates SI and DI to point to the next string
element. When used in conjunction with REP;-
MOYVS performs a memory-to-memory block
transfer.

Encoding:

[1010010w |

if w=0then SRC = (Sl), DEST = AL, DELTA =1
else SRC = (SI) + 1:(Sl), DEST = AX, DELTA =2

MOVSOperands S Clocks* Transferé Bytes MQVSCbIdingExampler

dest-string, source-string 18(26) 2 1 |MOVS LINE_EDIT . DATA
(repeat) dest-string,-source-string|'9+17(25)/ rep| = 2/rep - 1 REP MOVS$ SCREEN, BUFFER

*b(w): where'b denotes the number of .clock cycles for byte operands and w denotes the
number of clock cyclesforword operands. ¥

2-114

MUL

Operation:

(DES) < (LSRC) * (RSRC), where *
is unsigned multiply

if (EXT)=0then (CF) <0

else (CF) < 1;

(OF) < (CF)

Description:

MUL source

MUL (Multiply) performs an unsigned multi-
plication of the source operand and the accum-
ulator. If the source is a byte, then it is
multiplied by register AL, and the double-
length result is returned in AH and AL. If the
source operand is a word, then it is multiplied
by register AX, and the double-length result is
returned in registers DX and AX. The oper-

Encoding:

[1111011w [mod100r/m]|

MULTIPLY

MUL

Flags Affected:

CF, OF.
AF, PF, SF, ZF undefined

ands are treated as unsigned binary numbers
(see AAM). If the upper half of the result (AH
for byte source, DX for word source) is non-
zero, CF and OF are set; otherwise they are
cleared. When CF and OF are set, they indi-
cate that AH or DX contains significant digits
of the result. The content of AF, PF, SF and
ZF is undefined following execution of MUL.

if w=0then LSRC = AL, RSRC = EA, DEST = AX, EXT = AH
elseé LSRC = AX, RSRC = EA, DEST = DX:AX, EXT = DX

MUL Operands Clocks* Transfers| Bytes| MUL Coding Example
reg8 70-77 — 2 |MULBL

reg16 118-113 — 2 |MULCX

mema3 (76-83) + EA 1 2-4 | MUL MONTH [SI]
mem16 (128-143) + EA 1 2-4 |MUL BAUD__RATE

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-115

NEG

Operation:

(EA) < SRC - (EA) e
(EA) < (EA) + 1 (affecting flags)

Nanavisadiam:
UeoLiipuvull.

NEG destination

NEG (Negate) subtracts the destination
operand, which may be a byte or a word, from
0 and returns the result to the destination. This
forms the two’s complement of the number,
effectively reversing the sign of an integer. If
the operand is zero, its sign is not changed.

Encoding:

[1111011w [mod011r/m|

ifw=0thenSRC=FFH =
else SRC = FFFFH

NEGATE

NEG

Flags Affected:

AF, CF, OF, PF, SF, ZF

Attempting to negate a byte containing —128
or a word “containing —32,768 causes no
change to the operand and sets OF. NEG
updates AF, CF, OF, PF, SF and ZF. CF is
always set except when the operand is zero, in
which case it is cleared. = -

NEG Operands Clocks* Transfers | Bytes | NEG Coding Example
register 3 At = > | NEG AL f
memory 16(24) + EA - 2-4 NEG‘MULvTIPLlER' ‘

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-116

NOP NO OPERATION NOP

Operation: .= - Flags Affected:
None A None

Description:

NOP

NOP (No Operation) causes the CPU to do
nothing. NOP does not affect any flags.

Encoding:

[10010000]

NOP Operands | Clocks | Transfers | Bytes | NOP Coding Example

(nooperands) | 3 i 1 NOP

2-117

NOT LOGICAL NOT NOT

Operation: Flags Affected:
(EA) < SRC - (EA) None

Description:

NOT destination

NOT inverts the bits (forms the one’s comple-
ment) of the byte or word operand.

Encoding:

[1111011w [mod010r/m]|

if w=0then SRC = FFH
else SRC = FFFFH

NOT Operands Clocks* |Transfers | Bytes | NOT Coding Example

register 3 — — NOT AX
memory 16(24) + EA 2 : — NOT CHARACTER

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2:118

OR LOGICAL OR OR

Operation: Flags Affected:
(DEST) < (LSRC) OR (RSRC) CF, OF, PF, SF, ZF.
(CF)<0 AF undefined
(OF) <0

Description:

OR destination,source

OR performs the logical ‘‘inclusive or’’ of the
two operands (byte or word) and returns the’
result to the destination operand. A bit in the
result is set if either or both corresponding bits
in the original operands are set; otherwise the
result bit is cleared.

2-119

OR LOGICAL OR OR

Encoding:

Memory or Register Operand with Register Operand:

[000010dw [modregr/m |

ifd =1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST=EA

Immediate Operand to Memory or Register Operand:

[1000000w [mod001r/m| data [dataifw=1 |

LSRC =EA, RSRC =data, DEST =EA

Immediate Operand to Accumulator:

f00001 10w | data] data ifw=1j

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC =data, DEST = AX

OR Operands Clocks* |Transfers|Bytes|OR Coding Example
register, register 3 — 2 |ORAL,BL
register, memory 9(13) + EA 1 2-4 |OR DX, PORT_ID [DI]
memory, register 16(24) + EA 2 2-4 [ORFLAG__BYTE,CL
accumulator, immediate 4 - 2-3 |OR AL, 01101100B
register, immediate 4 — 3-4 |ORCX,01H
memory, immediate 17(25)+ EA 2 3-6 |OR[BX].CMD__WORD,0CFH

*b(w): where b denotes the number of clock cycles for byte operands and w
denotes the number of clock cycles for word operands.

2-120

OuT

Operation:
(DEST) < (SRC)

Description:

OUT port,accumulator

OUT transfers a byte or a word from the AL
register or the AX register, respectively, to an
output port. The port number may be speci-
fied either with an immediate byte constant,
allowing access to ports numbered 0 through

Encoding:

Fixed Port:

[1110011w]| port |

it w=01then SRC = AL, DEST = port
else SRC = AX, DEST = port+1:port

Variable Port:

(1110111 w |

if w=0then SRC = AL, DEST = (DX)
else SRC = AX, DEST = (DX) + 1:(DX)

OUTPUT

OouT

Flags Affected:

None

255, or with a number previously placed in
register DX, allowing variable access (by
changing the value in DX) to ports numbered
from O through 65,535.

Clocks* | Transfers

Bytes | OUT Coding Example

OUT Operands
immed8, accumulator | 10(14)
DX, accumulator 8(12)

2 OUT 44, AX
1 OUT DX, AL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-121

POP POP

Flags Affected:

Operation:

(DEST) < ((SP) +1:(SP))
(SP) < (SP)+2

Description:

POP destination

POP transfers the word at the current top of
stack (pointed to by SP) to the destination
operand, and then increments SP by two to
point to the new top of stack. POP can be used
to move temporary variables from the stack to
registers or memory.

2-122

None

POP

POP POP POP

Encoding:

Memory or Register Operand:

110001111 [mod000r/m]

DEST=EA

Register Operand:

| 01011reg |

DEST =REG

Segment Register:

[000reg111]

if reg # 01 then DEST = REG
else undefined operation

POP Operands Clocks* | Transfers | Bytes | POP Coding Example

register 12 1 1 POP DX
seg-reg (CS illegal) 12 1 1 - POP DS
memory 25+EA 2 2-4 | POP PARAMETER

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-123

POPF

Operation:

Flags < ((SP) +1:(SP))
(SP) < (SP) + 2

Description:

POPF

POPF transfers specific bits from the word at
the current top of stack (pointed to by register
SP) into the 8086/8088 flags, replacing
whatever values the flags previously contained
(see figure 2-32). SP is then incremented by
two to point to the new top of stack. PUSHF

POP FLAGS

POPF

Flags Affected:

All

and POPF allow a procedure to save and
restore a calling program’s flags. They also
allow a program to change the setting of TF
(there is no instruction for updating_this flag
directly). The change is accomplished by
pushing the flags, altering bit 8 of the memory-
image and then popping the flags.

Encoding:
[10011100 |
POPF Operands‘ Clocks | Transfers | Bytes | POPF Coding Example
(no operands) 12 1 1 POPF

2-124

PUSH PUSH

Operation:

(SP) < (SP) -2
((SP)+1:(SP)) < (SRC)

Description:

PUSH source

PUSH decrements SP (the stack pointer) by
two and then tranfers a word from the source
operand to the top of stack now pointed to by
SP. PUSH often is used to place parameters
on the stack before calling a procedure; more

gpnprq]lv it is the basic mean

porary data on the stack.

tori
1505 831

Flags Affected:

2-125

None

PUSH

PUSH

Encoding:

PUS

H

Memory or Register Operand:

[11111111 [mod110r/m|

SRC=EA

Register Operand:

| 01010reg |
SRC = REG

Segment Register:

[000reg110]|
SRC =REG

PUSH

PUSH Operands | Clocks | Transfers | Bytes | PUSH Coding Example
register 15 1 1 PUSH SI

seg-reg (CS legal) 14 1 1 PUSHES

memory 24 +EA 2 2-4 |PUSH RETURN__CODE [SI]

2-126

PUSHF PUSHFLAGS PUSHF

Flags Affected:

Operation:

(SP) < (SP)-2
((SP)+1:(SP)) < Flags

Description:

PUSHF

PUSHF decrements SP (the stack pointer) by
two and then transfers all flags to the word at
the top of stack pointed to by SP. The flags

themselves are not affected.

Encoding:

10011101 |

None

PUSHF Operands | Clocks

Transfers

Bytes

PUSHF Coding Example

(no operands) 14

1

PUSHF

2-127

, ~ ROTATE THROUGH
RCL CARRY LEFT

Operation: SR ‘ Flags Affected:
(temp) < COUNT CF, OF
do while (temp) # 0
(tmpcf) < (CF)

(CF) < high-order bit of (EA)
(EA) < (EA) * 2 + (tmpcf)
(temp) < (temp) -1

if COUNT =1 then
if high-order bit of (EA) # (CF)

then (OF) <1

else (OF) <0

else (OF) undefined

Description:

RCL destination,count

RCL (Rotate through Carry Left) rotates the
bits in the byte or word destination operand to
the left by the number of bits specified in the
count operand. The carry flag (CF) is treated
as ‘“‘part of”’ the destination operand; that is,
its value is rotated into the low-order bit of the
destination, and itself is replaced by the high-
order bit of the destination.

2-128

RCL

,. ROTATE THROUGH ‘
RCL CARRY LEFT RCL

Encoding:

[110100vw [mod010r/m]

if v=0then COUNT =1
else COUNT = (CL)

RCL Operands Clocks* Trénsfers Bytes RCL Coding Example
register1, 71 2 — 2 |RCLCX,1

register, CL - 8+4/bit- — 2 |RCLAL,CL

memory, 1 0 15(23)+ EA 2 2-4 |RCL ALPHA, 1
memory, CL - |20(28) + EA + 4/bit 2 2-4 |RCL [BP].PARAM,CL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-129

RCR

Operation:

(temp) < COUNT
do while (temp) #0
(tmpcf) < (CF)
(CF) < low-order bit of (EA)
(EA) < (EA) / 2
high-order bit of (EA) < (tmpcf)
(temp) < (temp) -1
if COUNT =1 then
if high-order bit of (EA) # next-
to-high-order bit of (EA)
then (OF) <1
else (OF) <0
else (OF) undefined

Description:

RCR destination,count
RCR (Rotate through Carry Right) operates

exactly like RCL except that the bits are
rotated right instead of left.

Encoding:

[110100vw [mod011r/m]|

if v=0then COUNT =1
else COUNT = (CL)

ROTATE THROUGH CR
CARRY RIGHT RCR

Flags Affected:

CF, OF

RCR Operands Clocks Transfers|Bytes

RCR Coding Example |

register, 1 2
register, CL 8+4/bit
memory, 1 15(23) + EA
memory, CL 20(28) + EA + 4/bit

2 2-4
2 2-4

2
2

RCR BX, 1
RCRBL, CL '
RGR [BX] STATUS, 1
RCR ARRAY [DI], CL -

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-130

REP REPEAT REP
REPE/REPZ REPE/REPZ

REPEAT WHILE EQUAL/
REPEAT WHILE ZERO

REPNE/REPNZ REPNE/REPNZ
REPEAT WHILE NOT EQUAL/
REPEAT WHILE NOT ZERO

Operation: Flags Affected:

do while (CX)#0 None
service pending interrupt (if
any) execute primitive string
operation in succeeding byte
(CX) < (CX) -1
if primitive operation is CMPB,
CMPW, SCAB, or SCAW and
(ZF) # z then exit from
while loop

2-131

REP
REPE/REPZ

REPEAT

REP
REPE/REPZ

REPEAT WHILE EQUAL/
REPEAT WHILE ZERO

REPNE/REPNZ REPNE/REPNZ
REPEAT WHILENOT EQUAL/
REPEAT WHILE NOT ZERO

Description:

REP/REPE/REPZ/REPNE/REPNZ -

Repeat, Repeat While Equal, Repeat While
Zero, Repeat While Not Equal and Repeat
While Not Zero are mnemonics for two forms
of the prefix byte that controls subsequent
string instruction repetition. The different
mnemonics are provided to improve program
clarity. The repeat prefixes do not affect the
flags.

REP is used in conjunction with the MOVS
(Move String) and STOS (Store String)
instructions and is interpreted as ‘‘repeat while
not end-of-string’” (CX not 0). REPE and
REPZ operate identically and are physically
the same prefix byte as REP. These instruc-
tions are used with the CMPS (Compare
String) and SCAS (Scan String) instructions
and require ZF (posted by these instructions)
to be set before initiating the next repetition.
REPNE and REPNZ are mnemonics for the
same prefix byte. These instructions function
the same as REPE and REPZ except that the
zero flag must be cleared or the repetition is
terminated. ZF does not need to be initial-
ized before executing the repeated string
instruction.

Repeated string sequences are interruptable;
the processor will recognize the interrupt
before processing the next string ‘element.
System intérrupt processing is not affected in
any way. Upon return from the interrupt, the
repeated operation is resumed from the point
of interruption. However, execution does not
resume properly if a second or third prefix
(i.e., segment override or LOCK) has been
specified in addition to any of the repeat
prefixes. At interrupt time, the processor
“‘remembers’’ only the prefix that immediately
precedes the string instruction. After returning
from the interrupt, processing resumes, but
any additional prefixes specified are not in
effect. If more than one prefix must be used
with a string instruction, interrupts may be
disabled for the duration of the repeated exe-
cution. However, this will not prevent a non-
maskable interrupt from being recognized.
Also, the time that the system is unable to
respond to interrupts may be unacceptable if
long strings are being processed.

2-132

REP

REPEAT

REP

Encoding:
[11110012 |
REP Operands Clocks| Transfers | Bytes | REP Coding Example
(no operands) 2 — 1 REP MOVS DEST, SRCE
REPE/REPZ Operands |Clocks|Transfers | Bytes | REPE Coding Example
(no operands) 2 — 1 REPE CMPS DATA, KEY
REPNE/REPNZ Operands | Clocks | Transfers | Bytes | REPNE Coding Example

(no operands)

2

REPNE SCAS INPUT__LINE

2-133

RET

Operation:

(IP) < ((SP)=1:(SP))
(SP) < (SP) + 2
if Inter-Segment then
(CS) < ((SP)+1:(SP))
(SP) < (SP) + 2
if Add Immediate to Stack Pointer
then (SP) < (SP) + data

Description:

RET optional-pop-value

RET (Return transfers control from a pro-
cedure back to the instruction following the
CALL that activated the procedure. The
assembler generates an intrasegment RET if
the programmer has defined the procedure
NEAR, or an intersegment RET if the pro-
cedure has been defined as FAR. RET pops
the word at the top of the stack (pointed to by
register SP) into the instruction pointer and

RETURN

RET

Flags Affected:

None

increments SP by two. If RET is intersegment,
the word at the new top of stack is popped into
the CS register, and SP is again incremented
by two. If an optional pop value has been
specified, RET adds that value to SP. This
feature may be used to discard parameters
pushed onto the stack before the execution of
the CALL instruction.

2-134

RET 'RETURN RET

Encoding:

Intra-Segment:

| 11000011 |

Intra-Segment and Add Immediate to Stack Pointer:

11000010 [data-low [data-high |

Inter-Segment:

[11001011 |

Inter-Segment and Add Immediate to Stack Pointer:

[11001010 | data-low | data-high |

RET Operands Clocks | Transfers | Bytes | RET Coding Example
‘(intra-segment, no pop) ' 20 1 1. | RET
(intra-segmenit, pop) 24 1 3 RET 4
(inter-segment, no pop) 32 - 2 1 RET
(inter-segment, pop) 31 2 3 RET 2

2-135

ROL ROTATE LEFT ROL

Operation: Flags Affected:
(temp) < COUNT CF, OF
d whlle(temp)aéo

o}
(CF) < high-order bit of (EA)
(EA) < (EA) * 2 + (CF)
(temp) < (temp) - 1
if COUNT =1 then

if high-order bit of (EA) # (CF)

then (OF) <1

else (OF) <0

else (OF) undefined

Description:

ROL destination,count
ROL (Rotate Left) rotates the destination byte

or word left by the number of bits specified in
the count operand.

Encoding:

[110100vw [mod000r/m

if v=0then COUNT =1
else COUNT = (CL)

ROL Operands Clocks* Transfers| Bytes | ROL Coding Example
register, 1 L2 - 2 | ROLBX, 1

register, CL 8+4/bit — 2 |ROLDI, cL

memory, 1 15(23) + EA 2 2-4 | ROL FLAG_BYTE [DI]1
memory, CL 20(28) + EA + 4/bit 2 2-4 | ROL ALPHA,CL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-136

ROR ROTATE RIGHT ROR
Operation: ' Flags Affected:
(temp) < COUNT CF, OF

do while (temp) #0
(CF) < low-order bit of (EA)
(EA) < (EA) /2
high-order bit of (EA) < (CF)
(temp) < (temp) - 1
if COUNT =1 then
if high-order bit of (EA) # next-
to-high-order bit of (EA)
then (OF) < 1
else (OF) <0
else (OF) undefined

Description:

ROR destination,count
ROR (Rotate Right) operates similar to ROL

except that the bits in the destination byte or
word are rotated right instead of left.

Encoding:

[110100vw [mod001r/m]

if v=0then COUNT =1
else COUNT =(CL)

ROR Operand Clocks* Transfers | Bytes | ROR Coding Example
register, 1 2 — 2 RORAL,1

register, CL 8+ 4/bit - 2 | RORBX, CL

memory, 1 15(23) + EA 2 2-4 | ROR PORT__STATUS, 1
memory, CL 20(28) + EA +4/bit 2 2-4 | RORCMD__WORD, CL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-137

SAHF STORERESISTEN A SAHF

Operation: - .- Flags Affected:
(SF):(ZF):X:(AF):X:(PF):X:(CF) < (AH) AF, CF, PF, SF, ZF
Description:

SAHF

SAHF (store register AH into flags) transfers
bits 7, 6, 4, 2 and 0 from register AH into SF,
ZF, AF, PF and CF, respectively, replacing
whatever values these flags previously had.
OF, DF, IF and TF are not affected. This
instruction is provided for 8080/8085
compatibility.

Encoding:

| [10011110]

SAHF Operands | Clocks | Transfers | Bytes | SAHF Coding Example

(nooperands) | = 4 - 1 SAHF -

2-138

SAL SHIFT ARITHMETIC LEFT
SHL SHIFTLOGICAL LEFT

Operation: Flags Affected:
(temp) < COUNT CF, OF, PF, SF, ZF.
do while (temp) # 0 AF undefined

(CF) < high- order bit of (EA)
(EA) < (EA) * 2
(temp) < (temp) -1
if COUNT =1 then
if high-order bit of (EA) # (CE)
then (OF) <1
else (OF) <0
else (OF) undefined

Description:

SHL/SAL destination,count

SHL and SAL (Shift Logical Left and Shift
Arlthmetlc Left) perform the same operatlon
auu arc puyal\.duy LllC same lIlbLIuLLlUll lllC
destination byte or word is shifted left by the
number of bits specified in the count operand.
Zeros are shifted in on the right. If the sign bit
retains its original value, then OF is cleared.

2-139

SAL
SHL

SAL SHIFTARITHMETICLEFT SAL
SHL SHIFT LOGICAL LEFT SHL

Encoding:

[110100vw [mod100r/m

if v=0then COUNT =1
else COUNT = (CL)

SAL/SHL Operands Clocks* Transfers| Bytes| SAL/SHLCoding Example
register, 1 2 — 2 |SALAH,1

register, CL 8+ 4/bit — 2 |SHLDI,CL

memory, 1 15(23) + EA 2 2-4 |SHL [BX].OVERDRAW, 1
memory, CL 20(28) + EA + 4/bit 2 2-4 |SAL STORE_COUNT, CL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-140

SAR

SHIFT ARITHMETIC

SAR

RIGHT
Flags Affected:

Operation:

(temp) < COUNT
do while (temp) # 0
(CF) < low-order bit of (EA)
(EA) < (EA) / 2, where / is
equivalent to signed division,
rounding down
(temp) < (temp) -1
if COUNT =1 then
if high-order bit of (EA) # next-
to-high-order bit of (EA)
then (OF) <1
else (OF) <0
else (OF) <0

Description:

SAR destination,count

SAR (Shift Arithmetic Right) shifts the bits in
the destination operand (byte or word) to the
right by the number of bits specified in the
order (sign) bit are shifted in on the left,
preserving the sign of the original value. Note
that SAR does not produce the same result as
the dividend of an ‘‘equivalent’” IDIV instruc-

2-141

CF, OF, PF, SF, ZF.
AF undefined

tion if the destination operand is negative and
1-bits are shifted out. For example, shifting —5
right by one bit yields —3, while integer divi-
sion —5 by 2 yields —2. The difference in the
instructions is that IDIV truncates all numbers
toward zero, while SAR truncates positive
numbers toward zero and negative numbers
toward negative infinity.

SAR SHIFT ARITHMETIC SAR

RIGHT

Encoding:

[110100vw [mod111r/m]

if v=0then COUNT =1

else COUNT = (CL)
SAR Operands Clocks* Transfers| Bytes|SAR Coding Example
register, 1 2 — 2 |SARDX,1
register, CL 8+ 4/bit — 2 |SARDI,CL
memory, 1 15(23) + EA 2 2-4 |SARN__BLOCKS, 1
memory, CL 20(28) + EA + 4/bit 2 2-4 |SARN__BLOCKS, CL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-142

SBB

Operation:

if (CF) =1 then (DEST) = (LSRC) -
(RSRC) -1
else (DEST) < (LSRC) - (RSRC)

Description:

SBB destination,source

SBB (Subtract with Borrow) subtracts the
source from the destination, subtracts one if
CF is set, and returns the result to the destina-
tion operand. Both operands may be bytes or
words. Both operands may be signed or

SUBTRACT WITH
BORROW

SBB

Flags Affected:

AF, CF, OF, PF, SF, ZF

unsigned binary numbers (see AAS and DAS).
SBB updates AF, CF, OF, PF, SF, and ZF.
Since it incorporates a borrow from a
previous operation, SBB may be used to write
routines that subtract numbers longer than 16
bits.

2-143

SBB SUBJRACTWITH SBB

Encoding:

Memory or Register Operand and Register Operand:

[000110dw [modregr/m |

ifd=1then LSRC =REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Immediate Operand from Memory or Register Operand:

[100000sw [mod 01 Tr/m |' data [data if s:w=01]

LSRC = EA, RSRC =data, DEST = EA

Immediate Operand from Accumulator:

[0001110w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

SBB Operands Clocks* |Transfers|Bytes|SBB Coding Example

register, register 3 2 |SBBBX,CX

register, memory 9(13) + EA 1 2-4 |SBBDI, [BX].PAYMENT
memory, register 16(24) + EA 2 2-4 |SBB BALANCE, AX
accumulator, immediate 4 — 2-3 |SBBAX, 2

register, immediate 4 — 3-4 |SBBCL,1

memory, immediate 17(25) + EA 2 3-6 |SBB COUNT[SI], 10

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-144

SCAS

SCAN (BYTE OR

SCAS

WORD) STRING

Operation:

(LSRC)-RSRC)
if (DF) =0then (D) <—(DI) + DELTA
else (DI) < (DI) - DELTA

Description:

SCAS destination-string

SCAS (Scan String) subtracts the destination
string element (byte or word) addressed by DI
from the content of AL (byte string) or AX
(word string) and updates the flags, but does
not alter the destination string or the accum-
ulator. SCAS also updates DI to point to the
next string element and AF, CF, OF, PF, SF
and ZF to reflect the relationship of the scan
value in AL/AX to the string element. If

Encoding:

[1010111w|

Flags Affected:
AF, CF, OF, PF, SF, ZF

SCAS is prefixed with REPE or REPZ, the
operation is interpreted as ‘‘scan while not
end-of-string (CX not 0) and string-element =
scan-value (ZF = 1).”” This form may be used
to scan for departure from a given value. If
SCAS is prefixed with REPNE or REPNZ, the
operation is. interpreted as ‘‘scan while not
end-of-string (CX not 0) and string-element is
not-equal to scan-value (ZF = 0).”” This form
may be used to locate a value in a string.

if w=0then LSRC = AL, RSRC = (DI), DELTA =1

else LSRC = AX, RSRC =

(DI)+1:(DI), DELTA =2

SCAS Operands Clocks* Transfers | Bytes | SCAS Coding Example
dest-string 15(19) 1 1 SCAS INPUT__LINE
(repeat) dest-string | 9+15(19)/rep 1/rep 1 REPNE SCAS BUFFER

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-145

L

9
Jia

Operation: .~ - ‘& 2.+ Flags Affected:

GICAL RIGHT - &

¥ &

(temp) < COUNT -~ - . CF, OF, PF,SF, ZF.
do while (temp) # 0 . AFundefined -
CF) < low-order bit of (EA P
(EA) < (EA) / 2, where | is
equivalent to unsigned
division
(temp) < (temp) -1
if COUNT =1 then
if high-order bit of (EA) # next-
to-high-order bit of (EA)
then (OF) <1
else (OF) <0
else (OF) undefined

Description:

SHR destination,source

SHR (Shift Logical Right) shifts the bits in the
destination operand (byte or word) to the right
by thé number of bits specified in the count
operand. Zeros are shifted in on the left. If the
sign bit retains its original value, then OF is
cleared.

2-146

SHR SHIFTLOGICALRIGHT SHR

Encoding:

[110100vw [mod101r/m|

if v=0then COUNT =1
else COUNT = (CL)

SHR Operands Clocks* Transfers|Bytes| SHR Coding Example
register, 1 2 — 2 |SHRSI1

register, CL 8+ 4/bit — 2 |SHRSI,CL

memory, 1 15(23) + EA 2 2-4 |SHRID_BYTE [SI] [BX], 1
memory, CL 20(28) + EA + 4/bit 2 2-4 [SHRINPUT_WORD, CL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-147

STC

Operation:
(CF) <1

Description:

STC

SETCARRY STC

Flags Affected:

STC (Set Carry flag) sets CF to 1 and affects

no other flags.

Encoding:
11111001 |
STC Operahds Clocks | Transfers | Bytes | STC Coding Example
(no operands) 2 — 1 STC

2-148

STD SETDIRECTIONFLAG STD

Operation: .. Flags Affected:
(DF) < 1 DF

Description:

STD

STD (Set Direction flag) sets DF to 1 causing
the string instructions to auto-decrement the
SI and/or DI index registers. STD does not
affect any other flags.

Encoding:

[11111101 |

Timing: 2 clocks

STD Operands | Clocks | Transfers | Bytes

STD Coding Example

(no operands) 2 — 1

STD

2-149

STI SET INTERRUPT- STI

ENABLE FLAG

Operation: Flags Affected:

(IF) <1

Description:

STI (Set Interrupt-enable flag) sets IF to 1,
enabling processor recognition of maskable
interrupt requests appearing on the INTR line.
Note however, that a pending interrupt will
not actually be recognized until the instruction
following STI has executed. STI does not
affect any other flags.

Encoding:

[11111011 |

STIOperands | Clocks | Transfers

Bytes

STl Coding Example

(no operands) 2 —

STI

2-150

STOS Siom@neon, STO8

WORD) STRING
" Flags Affected:

Operation:
(DEST) < (SRC)

if (DF) =0 then (DI) < (DI) + DELTA
else (DI) < (DI) - DELTA

Description:

STOS destination-string

STOS (Store String) transfers a byte or word
from register AL or AX to the string element
addressed by DI and updates DI to point to the
next location in the string. As a repeated
operation, STOS provides a convenient way
to initialize a string to a constant value (e.g., to

blank out a print line).

Encoding:

(1010101 w |

None

if w=0then SRC = AL, DEST = (DI), DELTA =1
else SRC = AX, DEST = (DI)+1:(DI), DELTA =2

STOS Operands Clocks* Transfers | Bytes | STOS Coding Example
dest-string 11(15) 1 1 STOS PRINT__LINE
(repeat) dest-string | 9+10(14)/rep 1/rep 1 REP STOS DISPLAY

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-151

SUB SI:JBTRACT - SUB

Operation: - Flags Affected:
(DEST) < (LSRC) - (RSRC) AF, CF, OF, PF, SF, ZF
Description:

SUB destination,source

The source operand is subtracted from the
destination operand, and the result replaces
the destination operand. The operands may be
bytes or words. Both operands may be signed
or unsigned binary numbers (see AAS and
DAS). SUB updates AF, CF, OF, PF, SF and
ZF.

2-152

SUB SUBTRACT SUB

Encoding:

Memory or Register Operand and Register Operand:

1001010dw [modregr/m |

ifd =1then LSRC = REG, RSRC =EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST =EA

Immediate Operand from Memory or Register Operand:

[100000sw [mod101r/m| data |dataif s:w=01|

LSRC = EA, RSRC = data, DEST = EA

Immediate Operand from Accumulator:

[0010110w]| data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

SUB Operands Clocks* |Transfers|Bytes|SUB Coding Example

register, register 3 2 |SUBCX, BX

register, memory 9(13) + EA 1 2-4 |SUB DX, MATH__TOTAL [SI]
memory, register 16(24) + EA 2 2-4 |SUB[BP + 2],CL
accumulator, immediate 4 — 2-3 |SUBAL, 10

register, immediate 4 — 3-4 |SUB SI, 5280

memory, immediate 17(25)+ EA 2 3-6 |SUB [BP].BALANCE, 1000

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-153

TEST TEST

Operation:

(LSRC) & (RSRC)
(CF)<0
(OF) <0

Description:

TEST destination,source

TEST performs the logical ‘‘and’’ of the two.

operands (byte or word), updates the flags, but
does not return the result, i.e., neither operand
is changed. If a TEST instruction is followed
by a JNZ (jump if not zero) instruction, the
jump will be taken if there are any correspond-
ing 1-bits in both operands.

2-154

Flags Affected:

CF, OF, PF, SF, ZF.
AF undefined

TEST

TEST TEST TEST

Encdding:

Memory or Register Operand with Register Operand:

[1000010w [modregrim |
LSRC = REG, RSRC =EA

Immediate Operand with Memory or Register Operand:

[1111011w [mod000r/m| data | dataifw=1 |

LSRC = EA, RSRC = data

Immediate Operand with Accumulator:

[1010100w]| data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data
else LSRC = AX, RSRC = data

TEST Operands Clocks |Transfers|Bytes |[TEST Coding Example
register, register 3 — 2 |TESTSI, DI
register, memory 9(13)+ EA 1 2-4 |TEST S|, END_COUNT
accumulator, immediate 4 — 2-3 |TESTAL, 00100000B
register, immediate 5 - 3-4 |TEST BX, 0CC4H
— 3-6

memory, immediate 11+EA TEST RETURN__CODE, 01H

2-155

WAIT WAIT WAIT

Operation: Flags Affected:
None None
Description:

WAIT causes the CPU to enter the wait state
while its TEST line is not active. WAIT does
not affect any flags.

Encoding:

[10011011 |

WAIT Operands | Clocks | Transfers | Bytes I WAIT Coding Example

(no operands) 3+5n — 1 WAIT -

2-156

XCHG EXCHANGE XCHG

Operation: Flags Affected:
(temp) < (DEST) None
(DEST) < (SRC)

(SRC) < (temp)

Description:

XCHG destination,source

XCHG (exchange) switches the contents of the
source and destination (byte or word)
operands. When used in conjunction with the
LOCK prefix, XCHG can test and set a sema-
phore that controls access to a resource shared
by multiple processors (see section 2.5).

2-157

XCHG

Encoding:

EXCHANGE

XCHG

Memory or Register Operand with Register Operand:

11000011w |[modregr/m|

SRC =EA, DEST = REG

Register Operand with Accumulator:

| 10010reg |

SRC =REG, DEST = AX

XCHG Operands Clocks* | Transfers| Bytes | XCHG Coding Example
accumulator, reg16 3 — 1 XCHG AX, BX
memory, register 17(25) + EA 2 2-4 | XCHG SEMAPHORE, AX
register, register 4 — 2 XCHG AL, BL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-158

XLAT

Operation: -

AL < ((BX) + (AL))

Description:

XLAT translate-table

XLAT (translate) replaces a byte in the AL
register with a byte from a 256-byte, user-
coded translation table. Register BX is
assumed to point to the beginning of the table.
The byte in AL is used as an index into the
table and is replaced by the byte at the offset in
the table corresponding to AL’s binary value.

Encoding:

[11010111]

- TRANSLATE

XLAT

Flags Affected:

None

The first byte in the table has an offset of 0.
For example, if AL contains SH, and the sixth
element of the translation table contains 33H,
then AL will contain 33H following the
instruction. ' XLAT 1is useful for translating
characters from one code to another, the
classic example being ASCII to EBCDIC or
the reverse.

XLAT Operands | Clocks

Transfers

Bytes | XLAT Coding Example

source-table 11 1

1 XLAT ASCII_TAB

2-159

XOR EXCLUSIVE OR XOR

Operation: Flags Affected:
(DEST) < (LSRC) XOR (RSRC) CF, OF, PF, SF, ZF.
(CF)<0 AF undefined
(OF) < 0

Description:

XOR destination,source

XOR (Exclusive ‘Or) performs the logical
‘““exclusive or’’ of the two operands and
returns the result to the destination operand. A
bit in the result is set if the corresponding bits
of the original operands contain opposite
values (one is set, the other is cleared); other-
wise the result bit is cleared.

2-160

XOR EXCLUSIVE OR XOR

Encoding:

Memory or Register Operand with Register Operand:

[001100dw [modregr/im]

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST =EA

Immediate Operand to Memory or Register Operand:

[1000000w [mod110r/m| data [dataifw=1 |

LSRC = EA, RSRC = data, DEST = EA

0011010w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC =data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

XOR Operands

Clocks*

Transfers | Bytes | XOR Coding Example

register, register
register, memory
memory, register
accumulator, immediate
register, immediate
memory, immediate

2 | XORCX, BX

2-4 | XORCL, MASK__BYTE
2-4 | XOR ALPHA [SI], DX
2-3 | XOR AL, 01000010B

3-4 | XOR SI, 00C2H

3-6

1
2
2 XOR RETURN__CODE, 0D2H

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-161

iAPX 88
Design

CHAPTER 3
HARDWARE DESIGN

INTRODUCTION

This chapter discusses the hardware design of
1APX 88 systems. First, the pins and signals
of the 8088 CPU are functionally described
for simple, but powerful iAPX 88 systems.

The timings of 8088 signals are explained,
and how they-cleanly interface the 8088 CPU
with the rest of the system.

Other parts of the iAPX 88 system are dis-
cussed including, the clock generator, reset
and wait state circuits.

Interrupt handling follows, leading “into a
description - of maximum mode iIAPX 88
systems.

8088 CPLU Pin Functions

The functions of the 8088 CPU pins, are
categorized by these groups (Fig. 3-1):

1) Address

2) Data

3) Control and Status

4) Timing

5) Power/Ground

anp [1 \-/ 40 [Vee
ISTANE: 39[] Ats
az]3 38 [] ate/s3
a2 []4 37 [] Ar7/s4
A1 [L;J 5 36 |] At18/ss
Aat0 [(]6 35] A19/S6
a9 []7 34] ss0
as (|8 33 [_] MN/MIX
ap7 [9 32 E] RD
Aps [|10 8088 31[] HoLD
aps [] 11 Cpu 30 [HLDA
aps {12 29 [] WR
AD3 [(13 28 [] 1o
ap2 [|14 27 [} DT/R
AD1 E 15 26 [] DEN
apo |16 25 [] ALE
Nmi 17 24] INTA
INTR []18 23 [] TEST
cLk 1o 22 |] READY
GND [] 20 21|] RESET

Figure 3-1. 8088 CPU Pins

The number of pins in each group varies. The
only pin in the Timing group is the clock,
while others, such as the Address and Data
groups, use many pins and are multiplexed
with other functions.

The 8088 pins and their functions are briefly
described here. For more information, con-
sult the iAPX 88/ 10 data sheet (see pg. 37 of
Appendix) and the iAPX 86, 88 Family
User’s Manual.

ADDRESS AND DATA
The 8088 CPU uses 20 pins to directly

address up to one million bytes of memory.
Some address nins are multinlexed to also

QLIS pPRIls QIC ILRIUPIRACSS W0 ass

function as data or status pins. Thus, the
8088 provides all necessary signals from a
40-pin package.

The address pins are discussed below in these
three groups:

1) ADy-AD7. Drives the lower eight address
bits and also the iAPX 88’s 8-bit data bus.

2) Ag-Ajs. Address bits 8-15..

3) Ajg-Ajg. Drives the upper 4 bits of the
iAPX 88’s 20 bit address bus; also generates
status signals.

AD,-AD,
Pins AD(through AD~ are time-multiplexed
in the iAPX 88 'system to serve as both
address and data lines (Fig. 3-2). At the
beginning of every machine cycle, the lower 8
address bits are driven on these pins. Later in
the machine cycle, these pins function as the
8-bit data bus. At this time, ADy-AD7 may
be inputs or outputs, depending on whether
the 8088 is reading or writing data to or from
the system.

These lines float to 3-state OFF during inter-
rupt acknowledge and local bus “hold acknow-
ledge.”

HARDWARE DESIGN

Ag-Ais

These pins drive the next 8 address bits on
the address bus. They are not multiplexed
with other signals and are Vahd during the
entire machine cycle.

These lines float to 3-state OFF during inter-
rupt acknowledge and local bus “hold acknow-
ledge”.

Aig-Aqg

A6 through A9 have two sets of functions.
First, at the beginning of each machine cycle,
these pins drive the upper 4 bits of the iAPX
88’s 20-bit address bus. These 4 address bits,
(not provided by other 8-bit microproces-
sors), together with the other 16-bits of
address, enable the iAPX 88 to directly
address 1 megabyte of memory. This is 16
times more than 8080, 8085, Z80, MC6800*
and MC6809™.

The second function of these four pins is to
provide status information. After the address
has been latched, pins Ajg and A7 change
their function to status signals S3 and S4.
These two signals can be decoded to deter-
mine which memory segment is being acces-
sed by the 8088 during the current machine
cycle (Fig. 3-3). This information could be
used to enable memory, such that each of the

4 segments could have its own megabyte of
memory, extending the iAPX 88 memory
space to 4 megabytes.

Status line S5 gives the state of the interrupt
flag. S6 is always low. These status signals are
not necessary for normal operation of most
systems, but they can be useful for
diagnostics.

These lines float to 3-state OFF during inter-
rupt acknowledge and local bus “hold acknow-
ledge“.

POWER

The 8088 should have pin 40 connected to
+5V, and pins 1 and 20 are ground. Decou-

S3 S4
0 0 Alternate (relative to the ES
segment)

1 0 Stack (relative to the SS segment)
0 1 Code/None (relative to the CS
segment or a default of zero)

1 1 Data (relative to the DS segment)

S5 =|IF (interrupt enable flag)
S6 =0 (indicates the 8088 is on the bus)

Figure 3-3. Decoding of Status Signals S;-Sg

8088 A15
CPU | A8 A8-A15 >
AD7
ADO
ALE A
Y &

A I S
A8 8
AD7

ALE

ADO sTB
D0-D7 >
l

S EARLY AND DATA

Figure 3-2. Time Multiplexing of Address and Data

*Z80 is a registered trademark of Zilog Corporation.
**MC6800 and MC6809 are registered trademarks of Motorola Corporation. 3-2

HARDWARE DESIGN

pling capacitors are recommended to reduce
the noise on the power and ground lines.

TIMING _
Pin 19 is the clock input for basic timing of
the 8088. The maximum clock frequency is
5 MHz for the 8088, and 8 MHz for the
8088-2. The clock signal is usually generated
by the 8284 A (see pg. 3-13).

CONTROL STATUS
These lines specify the type of machine cycle
occurring and control external logic.

RD. The Read line is an active LOW output,
which indicates when the CPU is reading data
from a memory or I/ O device.

This signal floats to 3-state OFF during “hold
acknowledge”.

WR. The Write signal is an active LOW out-
put, which indicates that the CPU is output-
ting data onto the data bus to write it into a
memory or I/ O device.

This signal floats to 3-state OFF during “hold
acknowledge”.

ALE. Address Latch Enable is an output that
latches the addresses on the iAPX 88’s address
bus. This signal is usually connected to the
STB input of an 8282 latch, (Fig. 3-5).

The falling edge of ALE latches the address
on the system address bus to hold it through-
out the entire machine cycle, even though
some of the 8088’s address pins will change
their functions during this time.- ALE never
floats.

10/M. This output specifies whether the cur-
rent machine cycle will address an 1/O or a
memory device (HIGH = 1/O, LOW =
Memory). This signal is valid during the entire
machine cycle, and floats to 3-state OFF dur-
ing “hold acknowledge”.

RESET. Providing an orderly way to start or
restart an iAPX 88 system, reset is an active
HIGH input to the 8088, synchronized by the
8284A.

Reset causes the processor to immediately
terminate its present activity and to condition
the bus as shown in Fig. 3-15. When reset
returns LOW, the 8088 will begin executing
from memory location FFFF0g.

During reset the processor is initialized to the
following conditions:

1) The Flag register is reset to 0000. This
disables interrupts and the single step mode.

2) The DS, ES, SS and IP registers are reset
to 0000.
3) The CS register is set to FFFF¢.

Mn/MX. This input configures the 8088 in the
minimum mode when HIGH, and in the max-
imum mode when LOW. This manual focuses
on minimum mode systems. Refer to pg. 3-24
for a discussion of maximum mode systems.

The pins and signals described above are suf-
ficient to completely control a small multi-

_ plexed bus system (Fig. 3-4). Larger systems,

3-3

however, use latches and transceivers for de-
multiplexing and increasing the drive of the
busses. Control ‘signals for handling these
latches and for other functions are described
below as they are used in the iAPX 88 Iarger
system (Fig. 3-5).

DT/R. Data Transmit/ Receive is an output,
controlling the direction in which the data
bus transceivers (8286s or 8287s) drive the
data on the data bus. When HIGH, data is
transmitted onto the system data bus from
the 8088. When LOW, data is received from
the system bus to be read by the 8088. This
signal floats to 3-state OFF during “hold
acknowledge”.

DEN. The Data Enable output drives the
output enable of the 8286/8287 data bus
transceivers. This prevents bus contention by
disabling the data bus transceivers while the
8088 is driving addresses on the address/data
bus.

HARDWARE DESIGN

Vee

8284A

8088

READY
RES
RESET

X1

Ag-A1s
CLK
ADo-AD7

READY

MN/MX

ALE
RD
RESET WR

10/M}

ADDR

K _ADDR/DAT
—Vcc

8155-2

“

PORT
cE A

WR poRrt
B

RD

ALE pORT
ADg.7

10/M

reseT OUT

8355-2/8755A-2

>

£

A~

oW
RD
ALE PORT
CE A

As-10

ADo-7

I0/M pORT
RESET B

GN%E«’?&LMIJ—SJ&%

8185-2

oE,
WR
RD

'V V)

ALE

[

Eé,CEg

\

Asg, Ag
ADo-7

VAVR

Figure 3-4. iAPX 88 Multiplexed Bus System

3-4

'g88

=
=
b

!

g

5

HARDWARE DESIGN

This signal floats to 3-state OFF during “hold
acknowledge” (Fig. 3-5).

INTR. Interrupt Request is a level-triggered
active HIGH input, sampled during the last

SSO. This is a status output. When decoded
with IO/M and DR/R, SSO specifies the
type of bus activity in progress (Fig.3-6).

clock cycle of each' ipstruction. It t‘ells the 1o/M |p1/R |S50
8088 to stop what it is currently doing and
service an I/ O or peripheral device. HHIGH) | 0 0 | Interrupt Acknowledge
When INTR is detected HIGH, the 8088 1 0 1 Read 1/0 port
_|:umps to an interrupt. service routine via an p 1 0 | Writel/O port
interrupt vector table in system memory. e .
. 1 1 1 alt
INTR can be internally masked through
software by resetting the interrupt enable bit 0(LOW) 0 0 | Codeaccess
in the Flag register. INTR is internally 0 0 | 1 | Readmemory
synchronized.
TNTA .. 0 1 0 Write memory
INTA. Used as a read strobe during interrupt :
acknowledge cycles, INTA is active LOW 0 ! 1 | Passive
during T2, T3, and T4 of each interrupt Figure 3-6. iAPX 88 Status Decoding
acknowledge cycle. INTA is never floated.
il :
X 8282 A16-A19)
}—{STB
A‘IA58- 8282 A8-A15 J>
Taml 8088
(| CPU
Vee l_l rl AD7 L—{STB o
8284A ADO 8282 A0-A7 _)
GENERRTOR| . |ouk = [: ﬁ
READY
RES [Reser ga%s_ 2307 D
RDY [TOE[TN\ 2N AN
I A INTA pr/R|—4]
GND i INTR DEN AN
" JHOLD 10/M
HLDA RD BN
WR B
NMI_TEST BEEEAVAREREAY4 RE2
WRRDCS IWﬁ RDCE WRRDCS
INTR DATA <__J
PERIPHERAL
»|HLD MEMORY v
HOLD l INTR TNTA ADDRESS <___
l ;

Figure 3-5. iAPX 88 with Buffered Demultiplexed Busses

3-5

HARDWARE DESIGN

HOLD/HLDA. Hold indicates that another
master is requesting control of the local bus.
To be acknowledged, HOLD, must be in its
active HIGH state.

The processor receiving the “HOLD” request
will issue HLDA (HIGH) at the end of the
last machine cycle of the current instruction.,
This acknowledges that the bus can now be
used by the requesting device. Simultaneous
with the issuance of HLDA, the processor
floats the local bus and control lines.

After HOLD'is detected as LOW, the proces-
sor LOWers HLDA, and when the processor
‘needs to run another cycle, it will again drive
the local bus and control lines.

NMI. Non-Maskable Interrupt is an edge-
triggered input causing a type 2 interrupt.

A subroutine is activated via an interrupt vec-

tor in system memory. NMI is not maskable -

by software.

A transition from a LOW to HIGH initiates

the interrupt at the end of the current instruc-
tion. This input is internally synchronized.

READY. The READY signal is used to add
wait states to the 8088 machine cycle so that

slow I/O or memory devices can be used. .

READY is a synchronized input generated
by the 8284A in response to the RDY1/
‘RDY2 or AEN1/AEN?2 inputs. .

TEST. This input synchronizes the CPU with
an external event. When used with the “Wait
for test” instruction, the CPU is kept in an

idle state until TEST is. driven low by an -

external event.

8088 Bus Timing and Minimum Mode Status

The 8088 CPU communicates with external
logic through the systems bus. This commun-
ication is accomplished by a machine cycle,
in which data is tranferred between the 8088
and a memory or peripheral device. During

this machine cycle, the 8088 first generates an .

address to select the proper memory or peri-
pheral device. Then the 8088 activates the
read or write control-line, and the data is
either transferred into the 8088 from the
selected memory or peripheral device (a read
cycle) or out of the 8088 to the selected
memory or peripheral device (a write cycle).

On termination of the cycle, the data is
latched by the 8088 (read), or the selected
device. (write), and the control signal 'is
deactivated.

The basic machme cycle of the 8088 consists
of four clock periods or T-states, T, T2, T3
and Ty4. (Fig. 3-7)

During the first T state (Ty), the CPU places
an address on the 20-bit address/data/status
bus. This address specifies a unique location
in the memory or I/ O address spaces of the
1APX 88, and is guaranteed to be valid on the
address bus when the ALE (Address Latch
Enable) signal makes a HIGH to LOW tran-
sition. By this time, the 10/M, SSO and
DT/R control and status signals are also
valid.

These signals tell the external logic which
type of machine cycle is occurring and in
which direction data will flow. The signal
10/ M specifies whether the addressed device
is in the iIAPX 88 I/O space or memory
space.

The DT/E (Data Transmit/Receive) signal
will be HIGH if data is to be transmitted out
of the CPU (a write cycle) or LOW if it is to
be read into the CPU (a read cycle).

SSO can be decoded with 10/M and DT/R

‘to specify other types of machine cycles such

as Interrupt Acknowledge, Halt and Passive.

During ‘state Ty, the 8088’s lower 8 address/

.data pins (ADg-AD7) float in preparatlon

for the data transfer.

~Next, the DEN and RD or WR control sig-

3-6

nals become valid, to enable the data onto

HARDWARE DESIGN

the bus for the transfer. This data will be read
into, or out of, the 8088 through pins ADg-
AD7, which now function as the data bus.
Also at this time the upper 4 address lines
switch from address (A16-A19) to status (S3-
S6). The status information available from
decoding these lines is primarily for diagnos-
tics monitoring.

However, S3 and S4 can be decoded to
determine which of the four segments is being
accessed by that particular machine cycle.
This information can be used to select one of
the four memory segments (Code, Data,
Stack or Extra) being addressed by the iIAPX
88. This technique allows memory partition-
ing by segment to expand memory address-
g up to four megabytes.

Decoding S3 and S4 can also provide a

degree of memory protection, by preventing
erroneous writes into overlapping segments.

During T3 the CPU continues to assert write
data or sample read data on the lower 8 bus
lines (ADg-AD7) and to provide status
information on the upper 4 bus lines (A ¢/ S3-
A19/S6). This state allows time for the data
to stabilize on the bus and be read by the
8088 or the selected memory or peripheral.

At the beginning of T4 the RD or WR line
goes inactive (HIGH) and the data is latched
into the 8088 or the selected device. The DEN
and DT/R signals also go HIGH and the
memory or peripheral is deselected from the
bus.

Extending Machine Cycle

If the memory or I/ O device cannot transfer
data at maximum CPU transfer rate, the

T,

ONEBUS CYCLE —|
B l

ALE _j—_\

A19/S8-6
A16/S3:>_(ADDRESS OUT X STATUS OUT)-_
Ais5-Ag :)———(ADDRESS OUT)——
AD7-ADo ADDRESS OUT DATA

10/M

X

LOW = MEMORY, HIGH = 1/0

X

S
z

\

Figure 3-7. iAPX 88 Basic Machine Cycle

3-7

HARDWARE DESIGN

device: must tell the CPU that the data
transfer is not complete and that the machine
cycle must be extended. It does this by bring-
ing the READY input LOW before the
beginning of T3. This forces the 8088 to insert
additional clock cycles (Wait States or Tw’s)
between T3 and T4.

Bus activity during Tw is the same as T3. The
address and control signals remain on the
bus, “allowing time to complete the data
transfer. When the selected device has com-
pleted the transfer, it brings the READY pin
HIGH, allowing the CPU to continue from
the Tw states into Tjy.

The CPU will then latch the data on the bus
during T4, as it would during a normal
machine cycle. The machine cycle is then
terminated in T4 when the command lines
are disabled, and the external device is de-
selected. Refer to READY, see pg. 3-16, and
the 1APX 86, 88 User’s Manual.

Idle Cycles

The 8088 CPU only executes a machine cycle
when instructions or operands must be trans-
ferred between the 8088 and memory or I/ O
devices. When not executing a machine cycle,
the bus interface executes idle cycles (Tj).
During these idle cycles, the CPU continues
to drive status information from the previous
machine cycle on the upper address lines.

If the previous machine cycle was a write, the
CPU continues to drive the write data onto
the multiplexed bus until the start of the next
machine cycle. If the CPU executes idle
cycles following a read cycle, the CPU will
not drive the lower 8 bus lines until the next
machine cycle is required. A

Because the CPU prefetches up to 4 bytes of
the instruction stream for the internal instruc-
tion queue, the relationship of instruction
fetch and associated operand transfers may
be skewed in time and separated by addi-
tional instruction fetches.

3-8

In general, if a given instruction is fetched
into the 8088’s internal instruction queue,
several additional instructions may be fetched
before the given instruction is removed from
the queue and executed.

If the instruction being executed is a jump or
other control transfer instruction, any instruc-
tions remaining in the queue are discarded
without execution.

Bus Interface

The bus interface of an iAPX 88 can be struc-
tured in a number ways. The best configur-
ation for a particular application depends on
system size, and the type of memory, and I/ O
devices used.

The simplest bus interface for an iIAPX 88
system uses the “multiplexed bus” configura-
tion. In this system, memory and I/ O devices
are attached directly to the 8088’s multi-
plexed Address/Data Bus (Fig. 3-4). This
configuration is ideal for small systems where
simplicity and low component-count are
important.

Each device must use ALE to internally latch
the address and separate it from data. There
are, however, certain limitations to this sys-
tem. First, only memory and I/O devices
specifically designed to operate on a multi-
plexed bus can be used in this system. Figure
3-8 lists all Intel multiplexed bus components
which are compatible with the iAPX 88.

8155/8156 | 256 Byte Static RAM, 1/0 and Timer
8185 1024 Byte Static Ram

8355 2048 Byte ROM and 1/0

8755A 2048 Byte EPROM and 1/0

8256 Multifunction UART

21821 4096 Byte Pseudostatic RAM

Figure 3-8. iAPX 88 Compatible Multiplexed'
Bus Components

HARDWARE DESIGN

Secondly; a multiplexed system is necessarily
small — usually less than 15 components —
due to the limited drive capability of the
MOS parts which directly drive the bus.

Larger iAPX 88 systems will normally use a
demultiplexed and buffered bus configura-
tion, (Fig. 3-5). In this configuration, the
8282 is used to latch the address and hold it
on the address bus throughout the entire
machine cycle. The 8286 octal transceiver
buffers the data bus to provide the higher
drive capability necessary for large systems.
Small systems could eliminate this trans-
ceiver and the latch on address lines Ag-Ajs.

Memory and Peripheral Interface

The 8088 uses address, data and control

information to control and communicate
with system memory and peripheral compo-
nents. Some components connect directly to
the multiplexed Address/Data Bus, while
others have separate address and data pins
and must connect to a demultiplexed bus.
Some interfacing methods for both multi-
plexed and demultiplexed busses follow.

MULTIPLEXED BUS SYSTEMS

The connection of two multiplexed bus com-
ponents (the 8755A and 8185) is given in
Figure 3-9. These components receive both
address and data on the same pins. The
address is internally latched by the ALE con-
trol signal.

The data then flows in (write), or out (read) if
the device has been enabled using the CS
(chip select) and CE (chip.enable) inputs.

Note that the RD, WR, 10/ M and ALE con-
trol signals from the 8088 CPU connect
directly to these chips.

Linear Chip Select

Connecting A9 to CE2 of the 8755A in Fig.
3-9 enables this device whenever Ajg is
HIGH. CEl is grounded so it is always valid.

3-9

The 8185 is enabled whenever A1 is LOW
and Ao is HIGH by connecting CS to Ay,
CE2 to A2, and CEl to ground.

Recall that address lines Ag-A s are held sta-
ble throughout the machine cycle and thus
can be connected directly to the chip enable
or chip select lines.

Linear chip select is a method that reduces
system chip complexity and chip count. At
the same time, linear chip selection reduces
available address space in the system. For
instance a 2K memory device, the 8755A, is
enabled by any address between 8000014 and
FFFFF ¢ (a 512K byte logical address space)
(Fig. 3-9). This is usually not a problem
because most systems using the multiplexed
bus configuration are small enough that the 1
megabyte address space of the iIAPX 88 is far
larger than necessary.

DE-MULTIPLEXED BUS SYSTEMS

Most system memories and peripherals re-
quire the address to be stable for the entire
machine cycle, therefore requiring address to
be latched and held on a separate de-
multiplexed address bus. Figure 3-10 shows
this system, with address lines Ag-A7 latched
by an 8282 octal latch, which drives the lower
8 bits of the de-multiplexed address bus.

Note that the data bus is still multiplexed.
This brings up two things to consider.

First, multiplexed bus parts can still be used
in this system, provided they are connected to
the data bus.

Second, any devices connected to the data bus
must guarantee not to drive data onto this
bus before the ALE signal has latched the ad-
dress into the 8282 and the 8088 has 3-stated
its lower 8 address drivers in preparation for
reading the data. If a device were to drive the
data bus as soon as its address is generated,
bus contention would occur because the 8088
is still driving the address on this bus. This
could cause an incorrect address to be
latched into the 8282 address latch.

HARDWARE DESIGN

o—{08d vd o0
o—] e 9Vd o0
o—ef 2ad sVd f==——0
o——¢ad Vd f==—0
81404 0/1 wm vad tvd NM V 140d 0/1
J s8d evd ﬂo
Olﬂ“.. 98d ivd ﬂo anNo
- o—5] Lad ovd [-=—0 H
EA o
ELY o - AQV3Y fe—o0
6 e o o zOp(memwwM
Pm L 7]} vssie o] o010
leo €l oy € V828
z ssp (3
ok g — L
8 oy MF 1av MN.
9av | 9av |- 29
8av | r3 BEREL] sav o
vav = 7] 230 vay e
gav | - wol £aV b=
Ty B 2av | s EL 20V o
Lav I T L v
o 00V 7] g RO o L
s[oy § -
_ P * 7] Aavay =
sin s R
13534 © 13534
3
W/0l O— s Wor aNof
e 11 ool
um 2 EL
ago]
0av o] 0av 1531 f——0—f
1V o— s G10H [75—0
zav o— zav HINI f—o0—
£0Y O—— M" tav 8808 INN T‘l
vav o- = rav
sav o] sav
90y O—— o] av
1av o~ =1 LV
8y O—— +18v
6Y O —16v
oY o o KA
1Y O 3 B
Z4Y O Al
o.li 1y
o—nv XW/NW o
SE/BLY O = SE/6LY A 0]

Figure 3-9. Multiplexed Bus Connections

3-10

HARDWARE DESIGN

Conveniently, most Intel peripherals,
EPROMs and RAMs in the iAPX 88 family
provide output enable or read inputs which
prevent this from happening.

Observe how some memory and peripheral
components are connected in this system
configuration. A-2716 2K x 8 EPROM and
two 2114 RAMs are connected in an iAPX
88 system with a demultiplexed address bus
(Fig. 3-10). Address lines Ag-Ajg from the
demultiplexed address bus are connected to
the address inputs Ag-Ajg of the 2716.

The multiplexed data bus is connected to the
data output of the 2716. The CE (chip ena-
ble) input is driven from an address decoder.
This could be either a decoder PROM or a
TTL decoder such as a 74L.S139.

Another possibility is te use a linear chip
select, described previously.

The output enable (OE) of the 2716 is driven
by the 8088’s RD control line. This enables
the output data onto the data bus from the
2716 with the proper timing to prevent bus
contention problems.

The connections for a 2114 RAM are a little
different from a 2716 because the 2114 is a
1K x 4 memory, and because it can be
written-to as well as read. Also, because it
does not have an output enable, care must be
taken to not cause bus contention by driving
the data bus too early.

The address pins of the 2114 are directly con-
nected to Ag-A9 on the de-multiplexed
address bus. The data pins I/O;-1/O4 are
connected to the multiplexed data bus.

L

A19-
A19 A16-A19 | |——>
A15-
15 A8-A15 >
AD7- 8282 AO-A7 >
ADO »
[LsTB
ALE |
8088 -
3088 - D0-D7 J>
o :)
WR U
BEN|— = e WE
po:07 | OFKawArg [WEOOK'™ aoag —HWE ADDRESS
2716 : 2114 2114 DECODER
- sy [@oDE DaDD |

O

Figure 3-10. Demultiplexed Bus Connections

3-11

HARDWARE DESIGN

Because the 2114 is a 1K x 4 memory, we
need two 2114’s to make an 8-bit wide
memory. The two 2114s are connected to the
data bus so that one drives data lines Dy-D3,
and the other drives Dg-D7. Any read or
write to the 2114s will enable both chips at
the same time to move the 8-bit data byte.

The chip select input cannot be connected
directly to the output of the address decoder,
as was done with the 2716, because the 2114
has no output enable pin. Instead, CS is
delayed by ORing the chip select with the
DEN output of the 8088. This delays the
2114s from outputting the data until after the
address has been latched by the falling edge
of ALE and the 8088 has tri-stated its
address/data bus.

LARGE DE-MULTIPLEXED BUS SYSTEMS
The bus configuration in Figure 3-10 is fine
for medium-sized systems, but if too many
components are connected to the busses, the
8088’s outputs will not be able to drive the
system.

Figure 3-5 shows a system where 8282
latches have been added to lines Ag-A15 and
A16-A19, and an 8286 octal transceiver has
been added to.the multiplexed data bus. This
accomplishes two things.

First, address bits A16-A19 are multiplexed
with status bits S3-S6 and therefore must be
latched like lines ADg-AD7 if they are to be
used in addressing.

Second, the 8286 on the data bus, and the

8282s on the address bus, can drive much
higher loads than the 8088 can. With the 8088

ALE}—]STB
A19. -
19 8282 A16-A19 >
L_[STB
A15- 8282 AB-A15
J— %oss A8 >
PU
Voo ‘—JW orl =5
8284A ADO 8282 A0-A7 ﬁ’>
aeieastorl |0y || |)
READY
{RES [|reser 8286 D0-D7 D
RDY [T T OE[TN N AN
I A INTA pT/RF—— T
GND ™|INTR DEN
>lHoLD 10/M B
HLDA RD —|
WR — T
NMI TEST YV VN Y YV Y VY B
WRRDCS WRRDCE WR RDCS
DATAK
INTR pERIPHERAL
»|HLD MEMORY
HOLD INTR__TNTA appress | |
4

Figure 3-11. iAPX 88 with Buffered Demultiplexed Busses

3-12

HARDWARE DESIGN

drive specified to drive 2.0mA and 100pF, a
system with 5 peripheral components and 10
memory components would overload the
bus.

The 8282 non-inverting and 8283 inverting
octal latches plus the 8286 non-inverting and
8287 inverting octal transceivers can drive
loads up to 32mA and 300pF. The 8282/8283
are directly controlled by connecting ALE to
the STB (strobe) input and grounding OE.
The 8286/8287 is controlled by connecting
the 8088’s DEN and DT/R signals to the
8286/8287’s EN (enable) and T (transmit
inputs). These signals provide the proper tim-
ing to guarantee that the address is latched
properly and that the 8286/8287 drives data
in the correct direction for read and write
cycles.

Note that adding these latches and transceiv-
ers increases the chip count and adds
propagation delays (25ns for the 8283 and
8287 and 35ns for the 8282 and 8286) that
subtract from the read or write access time of
the system’s memory and peripheral devices.
For complete specifications of the 8283/8282
and 8286/8287 see the data sheets in:the
Appendix.

Memory Operands !
The iAPX 88 directly operates on 8- or 16-bit
memory based variables. This means that a

6
MOVE 3,AX 5
2ND CYCLE
43 4
> 65 3
1STCYCLE)
15 87 0 1
65 | 43 0
16-BIT REGISTER MEMORY
FORMAT MAP

Figure 3-12. How 16-bit Data is Arranged
. within 8-bit memory

3-13

variable may occupy one or two bytes of
memory (each byte is 8-bits). Consequently,
8-bit operands are read or written in one
machine cycle, while 16-bit operands require
two bus cycles.

16-bit operands are stored in memory, with
the most significant byte (MSB) first and the
least significant byte (LSB) in the next loca-
tion. Figure 3-12 shows that when the 16-bit
operand 6543 was moved from the AX regis-
ter to memory location 3, the MSB (65) was
moved into location 3 by the first machine
cycle, and the LSB (43) was moved to loca-
tion 4 in the next machine cycle.

Clock Generation

The 8088 requires a clock signal with fast rise
and fall times (10ns maximum) between low
and high voltages.

The maximum clock frequency of the 8088 is
S MHz, and 8 MHz for the 8088-2. The
recommended method for generating this
signal is to use Intel’s 8284A clock generator.

USING 8284A

Either an external frequency source or a ser-
ies resonant crystal may be selected to drive
the 8284A. The selected source must oscillate
at 3X the desired CPU frequency.

To select the crystal inputs of the 8284A as
the frequency source for clock generation, the
F/C input to the 8284A must be strapped to
ground. The crystal should be connected
using the configuration shown in Figure 3-13.

8088
1 CPU
5100 % © | 8284A
F X1
L[] CLK CLK
: X2
510Q

Figure 3-13. Generating Clock Signal with 8284A

HARDWARE DESIGN

If a high-accuracy frequency source, externally-
variable frequency source, or a common
source for driving multiple 8284A’s is desired,
the External Frequency Input (EFI) of the
8284A can be selected by strapping the F/C
input HIGH through a pull-up resistor (~ 1K
ohms). The external frequency source should
be TTL compatible, have a 50% duty cycle,
and oscillate at 3 times the desired CPU
operating frequency.

The 8284 A has several other functions, includ-
ing RESET and READY generation (see pg.
3-16). For complete details on iAPX 88 clock
generation, refer to the iAPX 88/10 and
8284 A data sheets.

Reset

The 8088 RESET line provides an orderly
way to start or restart an iAPX 88 system. -

When the processor detects the positive-
going edge of a pulse on RESET, it
terminates all activities until the signal goes
LOW, at which time the internal CPU regis-
ters are initialized to the reset condition (Fig.
3-14). ,

Upon RESET, the code segment register and
the instruction pointer are initialized to
FFFFi¢ and 0 respectively. Therefore, the
8088 executes its first instruction following
system reset from absolute memory location
FFFFOH. This location normally contains an

CPU COMPONENT CONTENT
FLAGS Clear
Instruction Pointer 0000H

CS Register FFFFH

DS Register 0000H

SS Register 0000H

ES Register 0000H
Queue Empty

Figure 3-14. CPU State Following Reset

intersegment direct JMP instruction whose
target is the actual beginning of the system
program.

As external (maskable) interrupts are dis-
abled by system reset, the system software
should re-enable interrupts as soon as the sys-
tem is initialized, to the point where inter-
rupts can be processed.

The 8088 requires an active HIGH reset, with
minimum pulse width of 4 clocks, except
after power-on which requires a 50 us reset
pulse.

Since the CPU internally synchronizes reset
with the clock, the reset is internally active
for up to one clock period after the external
reset.

Non-Maskable interrupts (NMI) or hold
requests occurring during the internal reset
are not acknowledged. A hold request active
immediately after the internal reset will be
honored before the first instruction fetch.

Upon reset the 8088 will condition system the
busses in the following manner (Fig. 3-15):
The address bus will float to the three-state
condition upon detection' of reset by the
CPU. It floats until the CPU comes out of
reset and begins fetching code from
FFFFOy.

Other signals which three-state will bé driven
HIGH for one clock low period prior to
entering three-state (Fig. 3-16). '

ALE and HLDA are driven inactive (LOW)

‘and are not three-stated.

22K ohm pull-up resistors should be con-

3-14

nected to floatable CPU command and bus
control lines, to guarantee the inactive state
of these lines in systems where leakage cur-
rents or bus capacitance may cause the
voltage levels to settle below the minimum
HIGH voltage of devices in the system.

The reset signal to the 8088 is normally gen-
erated by the 8284A. The 8284A has a
schmitt trigger .input (RES) for generating
reset from a LOW active external reset.

HARDWARE DESIGN

The hysteresis specified in the 8284A data
sheet implies that at least 0.25 volts will
separate the logic 0 and 1 switching point of
the 8284A reset input. Inputs without hys-
teresis switch from LOW to HIGH and
HIGH to LOW at approximately the same
voltage threshold. The inputs are guaranteed

SIGNAL - CONDITION
ADO-AD7

AB-A15

FLOAT

S§0
IO!M
D'I;/R
DE_N
WR

*

RD

*

INTA

DRIVEN HIGH,
THEN FLOAT

ALE
* LOW

HLDA

Figure 3-15. iAPX 88 Bus Condition During Reset

to switch at specified LOW and HIGH vol-
tages (ViL and V1g), but the actual switching
point is anywhere in between.

Since ViL min. is specifiea at 0.8 volts, the
hysteresis guarantees that the reset will be
active until the input reaches at least 1.05
volts. A reset will not be recognized until the
input drops at least 0.25 volts below the reset
inputs Viy of 2.6 volts.

To guarantee reset from power up, the reset
input must remain below 1.05 volts for 50 us
after Vcc has reached the minimum supply
voltage of 4.5 volts. The hysteresis allows the
reset input to be driven by a simple RC cir-
cuit (Fig. 3-17).

The calculated RC value does not include
time for the power supply to reach 4.5 volts,
or the charge accumulated during this inter-
val. Without the hysteresis, the reset output
might oscillate as the input voltage passes
through the switching voltage of the input.
The calculated RC value provides the min-
imum required reset period of 50 us for
8284 A’s that switch at the 1.05 volt level, and
a reset period of approximately 162 us for
8284A’s that switch at the 2.6 volt level.

CLOCK q q
A>\
RESET INPUT /////
——————————————
INTERNAL
RESET
BUS

FLOAT BUS
DRIVE OUTPUT TO INACTIVE STATE

Figure 3-16. iAPX 88 Bus During Reset

3-156

HARDWARE DESIGN

If tighter tolerance between the minimum
and maximum reset times is necessary, the
reset circuit shown in Figure 3-18 might be
used rather than the simple RC circuit. This
circuit provides a constant current source and

SYSTEM RESET

8284A 8088
+5
RESET >| RESET
RES
CLK »{ CLK

T

Figure 3-17. 8284A Reset Circuit

a linear charge rate on the capacitor, rather
than the inverse exponential charge rate of
the RC circuit. The maximum reset period
for this implementation is 124 us.

The 8284A synchronizes the reset input with
the CPU clock to generate the RESET signal
to the CPU. This output is also available as a
general reset to the entire system. Reset has
no effect on any clock circuits in the 8284A.

READY IMPLEMENTATION AND TIMING

As discussed previously, the ready signal is
used in the iIAPX 88 system to generate wait
states to accommodate slow memory and
I/ O devices. Ready is also used in multipro-
cessor systems to force the CPU to wait for
access to the system bus.

The 8284A can be set up for systems using
synchronous or asynchronous ready signals
by strapping the ASYNCH input HIGH
(synchronous) or LOW (asynchronous). To
use the synchronous configuration, the de-
signer must analyze the ready timing to
insure that the setup and hold requirements

Vce

dv _ Ic
b dT C
| I :; R1
D
2 X~ ~Vcc—.6
v
__K T av
a7
_RESET
Rz g T
= C
Ry — DETERMINES CURRENT TO CHARGE C
1 J_ Rz — VALUE NOT CRITICAL = 10K
Ic = CHARGE CURRENT = Ybc(D1+D2-Ts)
6V

IF ALL SEMICONDUCTORS ARE SILICON, I¢ = R

Figure 3-18. Constant Current on Reset Circuit

HARDWARE DESIGN

are always met by the 8284A’s RDY and
AEN inputs. If this can not be guaranteed,
the asynchronous configuration must be
used.

Asynchronous System
To insert a wait state in the asynchronous
configuration; the RDY inputs must be valid
at least 35ns before the rising edge of the
clock in state Tp. The AEN must be valid
50ns before that edge.

If RDY or AEN make a transition later
than these setup times, the 8284A may not
recognize the change in time to cause the
READY output to change until after the
next clock cycle. For a normally not READY
system, this simply causes an extra wait state
to be added. In normally READY systems,
this must be avoided because it results in
premature termination of the machine cycle.

Synchronous Systems

In synchronous systems, setup times for the
8284A’s RDY and AEN inputs are specified
from the. falling edge of the clock in state T».
In this- configuration (ASYNCH strapped
LOW), transitions must not occur during the

RDY or AEN setup time to insure proper

operation of the 8284A.
Depending on the size and characteristics of
the system, ready implementation may use
either the normally READY or the normally
not READY approach.

Normally Ready Systems

In normally READY systems, all devices are
assumed to operate at the maximum CPU
bus bandwidth. Devices that do not meet this
requirement must disable READY as noted
above to guarantee the insertion of wait
states (Fig. 3-19). This implementation is typ-
ically used in small single-CPU systems. It
reduces the logic required to control the
READY signal. Since a device requiring wait
states may fail to disable READY in time to
be recognized, resulting in premature termi-
nation of the machine cycle, the system
timing must be carefully analyzed when using
this approach.

Normally Not Ready Systems

An alternate ready implementation is to have
the system normally not READY. When the
selected device receives the command (RD/
WR/INTA) and has had sufficient time to
complete the data transfer, it activates
READY to the CPU, allowing the CPU to
terminate the machine cycle (Fig. 3-20). This
implementation is characteristic of large
multiprocessor systems, multibus systems, or
where propagation delays; bus access deiays
and device characteristics inherently slow the
system down. For maximum system perfor-
mance, devices that can run with no wait
states must return “READY” within the pre-
viously described time. Failure to respond in

- ONE MACHINE CYCLE >

RDY INPUT W\ W/ f

READY 7
Figure 3-19. Normally READY Wait State Timing

OUTPUT \A\

317

HARDWARE DESIGN

time will only result in the insertion of one or
more wait states.

RDY1 and RDY2

To generate a stable READY signal to satisfy
the 8088’s setup hold times, the 8284A pro-
vides two separate system ready inputs
(RDYI and RDY2) and a single synchron-
ized ready output (READY) for the CPU.

The RDY inputs are enabled with separate
active LOW access enables (AEN1, AEN2)
to select one of the two ready signals. The
system ready inputs to the 8284A (RDYI,
RDY?2) must be valid 35ns (TR1VCL) before
T3 and AEN must be valid 60ns before T3.

For a system using only one RDY input, the
associated AEN is tied to ground while the
other AEN is connected to 5 volts through
1K ohms (Fig. 3-21). If the system generates a
LOW active ready signal, it can be connected
to one of the 8284A’s AEN inputs, if the
additional setup time required by the AEN
input is satisfied. In this case, the associated
RDY input would be tied HIGH (Fig. 3-22).

Single Wait State Generator

Most memory and peripheral devices that fail
to operate at the maximum CPU frequency
typically require only one wait state.

The circuit in Figure 3-23 is an example of a
simple wait state generator. The system ready
line is driven low whenever a device requiring

one wait state is selected. The flip-flop is
cleared by ALE, enabling RDY to the
8284A.

If no wait states are required, the flip-flop
remains HIGH. If the system ready is driven
LOW, the flip-flop toggles on the LOW to
HIGH clock transition of T3 to force one
wait state. The next LOW to HIGH clock
transition toggles the flip-flop again to indi-
cate ready, and allow completion of the
machine cycle. Further changes in the state of
the flip-flop will not affect the machine cycle.
The cycle allows approximately 100ns for
chip select decode and conditioning of the
system ready.

Interrupts

The iAPX 88 has a simple and versatile inter-
rupt system. Interrupts may be triggered by
devices external to the CPU or by software
interrupt instructions or, under certain condi-
tions, by the CPU itself.

Every interrupt is assigned a type code that
identifies it to the CPU. The type code is used
by the CPU to point to a location in the
memory based interrupt vector table contain-
ing the address of the interrupt routine.

This interrupt vector table can contain up to
256 vectors for different interrupt types (Fig.
3-25).

T4

ONE MACHINE CYCLE

CLK —/__\

RDY INPUT

/

Waltvalaliat

V7

READY

OUTPUT

Figure 3-20. Normally Not READY Wait State Timing

3-18

HARDWARE DESIGN

8284A 8284A
| wEw SYSTEW 3|
= READY AEN1
 SYSTEM 4
- READY RDY1 4 Rov1
AENZ i
REN2
51RoY2
6
1K 1K :E r RDY2
+5 =) ‘ ' +5 =

Figure 3-21. Using RDY1/RDY2 to Generate READY Figure 3-22. Using AEN1/AEN2 to Generate READY

74125 45
§§_ | l!KQ
;[74LS04
(o 74LS734
o|>CK
' CLKPr—----
K Q—RDY TO 8284A
CLR
ALE—D> I

Figure 3-23.- Single Wait State Generator

3-19

HARDWARE DESIGN

EXTERNAL INTERRUPTS

The 8088 has two inputs that may be used by
external devices to signal interrupts, INTR
and NMIL

The INTR (Interrupt Request) line is usually
driven by an Intel® 8259A Programmable
Interrupt Controller (PIC), which is in turn
connected to the devices that need interrupt
service. The 8259A is a- very flexible compo-
nent that is controlled by software com-
mands from the iAPX 88. The PIC appears
as a set of I/ O ports to the software.

The 8259A’s main job is to accept interrupt
requests from the devices attached to it,
determine which requesting device has high-
est priority, then activate the iAPX 88 INTR
line if the selected device has higher priority
than the device currently being serviced (if
any).

When INTR is active, the CPU takes different
action depending on the state of the interrupt-
enable flag (IF). No action takes place,
however, until the currently executing instruc-
tion has been completed. Some unusual cases
are described under the heading of Interrupt
Latency Exceptions. Then, if IF is clear —
meaning that interrupts signaled on INTR
are masked or disabled — the CPU ignores
the interrupt request and processes the next
instruction.

The INTR signal is not latched by the CPU,
so it must be held active until a response is
received or the request is withdrawn.

If interrupts on INTR are enabled (if IF is
“17), the CPU recognizes the interrupt request
and processes it. Interrupt requests arriving
on INTR can be enabled by executing an STI
(set interrupt-enable flag) instruction, and
disabled by the CLI (clear interrupt-enable
flag) instruction. They also may be selectively
masked (some types enabled, some disabled)
by writing commands to the 8259A.

Note that to reduce the likelihood of exces-
sive stack build-up, the STI and IRET
instructions will reenable interrupts only after
the end of the following instruction.

The CPU acknowledges the interrupt request
by executing two consecutive interrupt acknow-
ledge (INTA) machine cycles (Fig. 3-24). If a
bus hold request arrives via the HOLD line
during the INTA cycles, it is not honored
until the INTA cycles have been completed.
The first cycle signals the 8259A that the
request has been honored.

During the second INTA cycle, the 8259A
responds by placing a byte on the data bus.
This byte represents the interrupt type (0-255)
associated with the device requesting service.

|t

1STMACHINE CYCLE
T4 | T2 | T3 |

ALE ’ \

Ta | T

/UM

2ND MACHINE CYCLE ————— >

p T2, T3, Ta
[\ /L

INTA

v/

AD7-ADg

< VECTOR >
TYPE

Figure 3-24. Interupt Acknowledge Sequence

3-20

HARDWARE DESIGN

AVAILABLE
INTERRUPT
POINTERS
(224)

RESERVED
INTERRUPT
FO) TERS

P,

$

3FFH
| TYPE255POINTER: __|
(AVAILABLE)
3FCH
s -
\4 T
| TYPE33POINTER: __|
(AVAILABLE)
084H
| TYPE32POINTER: __|
(AVAILABLE)
080H
-07FH ;
| TYPE31POINTER: __|
(RESERVED)
b S
o 1
| TYPESPOINTER: __|
(RESERVED)
014H
| TYPE4POINTER: __|
OVERFLOW
010H
TYPE 3 POINTER:
[1-BYTE INT INSTRUCTION |
00CH
| TYPE2POINTER]
NON-MASKABLE
008H
| TYPE1POINTER 1
SINGLE-STE
004H ,
| TYPEQPOINTER: | | CSBASEADDRESS |
000H IP OFFSET

}4—16 BITS———»!

Figure 3-25. Interrupt Vector Table in Memory

3-21

~HARDWARE DESIGN

The type assignment is made when the 8259A
is initialized by software in the iAPX 88.

. The CPU reads this type code, locates the
corresponding interrupt vector in the inter-
rupt vector table, and calls the corresponding
interrupt procedure.

Interrupt Latency Exceptions

There are a few cases in which an interrupt
request is not recognized until after the fol-
lowing instruction. Repeat, LOCK, and
segment override prefixes are considered
“part of” the instructions they prefix; no
interrupt is recognized between execution of
a prefix and an instruction.

A MOV (move) to segment register instruc-
tion and a POP segment register instruction
are treated similarly: no interrupt is recog-
nized until after the following instruction.

This mechanism protects a program that is
changing to a new stack by updating SS and
SP. If an interrupt were recognized after SS
has been changed, but before SP has been
altered, the processor would push the flags,
CS, and IP into the wrong area of memory.

Therefore, whenever a segment register and
another value must be updated together, the
segment register should be changed first, fol-
lowed immediately by the instruction that
changes the other value.

WAIT and repeated string instruction are 2
cases where an interrupt request is recognized
in the middle of an instruction. In these cases,
interrupts are processed after any completed
primitive operation or wait test cycle.

External Interrupt

An external interrupt request may also arive
on another CPU input, NMI (non-maskable
interrupt). This line is edge-triggered (INTR
is level-triggered) and must be active for at
least two clock cycles. It is generally used to
signal the CPU of a “catastrophic” event,
such as imminent loss of power, memory
error, or bus parity error.

3-22

Interrupt requests arriving on NMI cannot
be disabled. They are latched by the CPU,
and have higher priority than an interrupt
request on INTR.

If an interrupt request arrives on both lines
during instruction execution, NMI will be
recognized first. Non-maskable interrupts are
pre-defined as type 2, which means that the
address of the service routine will be found in
the interrupt vector table at memory location
8 (Fig. 3-25). Because NMI is predefined as
type 8, the processor does not need to be
supplied with a type code to call the NMI
procedure.

Interrupt Latency

The time required for the CPU to recognize
an external interrupt request depends on how
many clock periods remain in the execution
of the current instruction. The longest latency
occurs when a multiplication, division, variable-
bit shift or rotate instruction is executing
when interrupt request arrives.

As mentioned previously, in a few cases,
worst-case latency will span two instructions
rather than one.

INTERNAL INTERRUPTS

An INT instruction generates an interrupt
immediately upon completion of its execu-
tion. The interrupt type, coded into the
instruction, lets the CPU obtain the interrupt
routine address from the interrupt vector
table.

Since any type code may be specified, soft-
ware interrupts may be used to test interrupt
procedures written to service external
devices.

The CPU itself generates a type O interrupt
immediately following execution of a DIV or
IDIV (divide, integer divide) instruction, if
the calculated quotient is larger than the spec-
ified destination.

HARDWARE DESIGN

SINGLE-STEP EXECUTION

If the trap flag (TF) is set, the CPU automat-
ically generates a type 1 interrupt following
every instruction. Single-step execution is a
powerful debugging tool.

If the overflow flag (OF) is set, an INTO
(interrupt on overflow) instruction generates
a type 4 interrupt immediately upon comple-
tion of its execution.

All internal interrupts, INT n, INTO, divide
error, and single-step share these character-
istics:

1) The interrupt type code is either contained
in the instruction or is predefined.

2) No INTA machine cycles are run.

3) Internal interrupts cannot be disabled,
except for single-step.

4) Any internal interrupt (except single-step)
has higher priority than any external inter-
rupt (Fig. 3-26). If interrupt requests arrive
on NMI and/or INTR during execution of
an instruction that causes an internal inter-
rupt (e.g., divide error), the internal interrupt
is processed first.

INTERRUPT VECTOR TABLE

The interrupt vector table is the link between
an interrupt type code and the procedure
designated to' service interrupts associated
with that code (Fig. 3-25).

The interrupt vector table occupies up to the
first 1K bytes of low memory. There may be
up to 256 entries in that table, one for each

INTERRUPT PRIORITIES
Divide error, INT n, INTO highest
NMI
INTR
Single-step ~ lowest

Figure 3-26. Interrupt Priorities

3-23

interrupt type that can occur in the system.
Each entry in the table is a double word poin-
ter containing the address of the procedure
that is to service interrupts of that type.

The higher-addressed word of the pointer
contains the base address of the code segment
containing the procedure. The lower-
addressed word contains the procedure’s
offset from the beginning of the segment.
These two word pointers will be placed in the
CS and IP registers, respectively, to cause the
CPU to execute the interrupt service routine.

Since each entry is four bytes long, the CPU
can calculate the location of the correspond-
ing entry for a given interrupt type by simply
multiplying (type - 4)..

Unused space at the high end of the interrupt
vector table may be used for other purposes.
The dedicated and reserved portions of the
interrupt pointer table (locations OH—
7FH), however, should not be used for any
other purpose, to insure proper operation
and compatibility with future Intel hardware
and software products.

INTERRUPT ACKNOWLEDGE SEQUENCE
When a maskable interrupt is acknowledged,
the CPU executes two interrupt acknowledge
machine cycles (Fig. 3-24). The CPU will not
recognize a hold request from another bus
master until the full interrupt acknowledge
sequence is completed.

During the first machine cycle, the CPU
floats the address/data bus and activates the
INTA (Interrupt Acknowledge) command
output during states Ty through T4.

During the second machine cycle, the CPU
again activates its INTA command output.
The external interrupt system (e.g., an Intel®
8259A Programmable Interrupt Controller)
responds to this by placing a byte on the data
bus that identifies the interrupt source, the
vector type. This byte is read by the CPU,
multiplied by four, and used as a pointer into
the interrupt vector table.

HARDWARE DESIGN

Before calling the corresponding interrupt
routine, the CPU saves the machine status by
pushing the flag’s register onto the stack.

The CPU then clears the interrupt enable and
trap bits in the flag’s register to prevent sub-
sequent maskable and single-step interrupts.
The CPU also establishes the interrupt rou-
tine return linkage by pushing the current CS
and IP register contents onto the stack,
before loading the new CS and IP register
values from the interrupt vector table.

Bus Control Transfer

In most iAPX 88 designs, the system busses
are normally controlled by the 8088 CPU.
This means that address and control signals
are driven by the 8088, and that data is driven
by the 8088 or by a device being read by the
8088.

HOLD AND HLDA

In some cases, however, another device can
take control of the system bus and drive it
while the 8088 is forced into the inactive
state, called “HOLD”. :

xxxxxxx

8237A or 8257 DMA Controller requests
control of the iIAPX 88 system by driving the
8088’s HOLD input HIGH. The DMA con-
troller must then wait until the 8088 responds
by raising the HLDA (Hold Acknowledge)
output. This signals the DMA controller that
the 8088 has completed the machine cycle in
progress when the HOLD request occurred
and floated its busses as listed in Figure 3-27.

The 8088 remains in the HOLD ‘state until
the DMA controller releases it by bringing
the HOLD line LOW. Then the DMA con-
troller floats the bus and control goes back to
the 8088 after its HLDA output goes LOW.

Figure 3-28 gives a general interconnect dia-
gram for an 1APX 88 system with an
8237A-5 DMA controller. This is a typical

3-24

configuration in which the HOLD/HLDA
sequence would be used.

The handshake timing for transfer of bus
control is shown in Figure 3-29. Note that the
8237A-5 drives the system only when the
8088 is in HOLD, and that HLDA and the
8237A AEN output can be used to properly.
enable and disable other components. to
assure a clean transfer of control.

Maximum Mode Systems

In addition to the minimum mode systerrrs
described, the iAPX 88 can also be config-
ured in the maximum mode.

Maximum mode systems are intended prim-
arily for larger multi-board and multi-
processor systems because they provide a
more sophisticated set of bus control signals.

SIGNAL CONDITION

ADO-AD7

A8-A15

A16/S3-A19S6

FLOAT

ALE LOW

HLDA HIGH

Figure 3-27. iAPX 88 Bus Condition During HOLD

HARDWARE DESIGN

—=12X
= |° vrees
- %19
Y10 _ -] 7 E
NOVa . OHH a 310 1y 6102
_ §-vi€Z8 © . 0 a10H
2% » 3 g
[s § & 3 vaw va
NOva dyda FAN 4 4N
w/ol
o}
3 S
— w vg HMm
] 3 <<||.
HOLY1 O egl—
a1s — 8 v
1 [[<z M 8 ay
1041NOD[A
rmll.
o“._ Iy 8808
A4OWIAW G+
p 11 _ ERL
VL
[T L.
N.oo<
| 3 a1s| —
HOLVYT |
N
mw.w< L Z
- me<

Figure 3-28. iAPX 88 and 8237A Connections

3-25

HARDWARE DESIGN

In the minimum mode 8088 CPU, the bus controller to generate several of the sys-
number of control outputs is limited by the tem control signals (Fig. 3-30). This frees up
number of pins available on the 40 pin pack- several 8088 pins to support multiprocessing
age. The maximum mode iAPX 88 system functions not available in minimum mode
gets around this limitation by using the 8288 systems.
T40RT4
CLK
HOLD ’ S \
HLDA

Figure 3-29. HOLD/HLDA Timing

—

v 8288 BUS
¢ l—{'”_l 1 LCONTROLLER
MN/MX | CLK
8284A |1, lcLk S - |50 INTA COMMAND BUS .
RES »[READY Si >|S4 MRDC >
—>IRESET S {3, MWTC >
DEN IORC >
l DT/R IOWC >
GENERATOR 8088 ALE
CPU
STB
8282
A19-A8 ADDRESS > OR ADDRESSBUS 1§
| | 8283
AD7-ADo| _ADDRESS/DATA
N OF LAVAA) YVvy
1/0
i MEMORY | |PERIPHERAL
‘ DATA "DATA
T
o8 8286 DATA BUS §
D> 8287

Figure 3-30. iAPX 88 Using Maximum Mode

3-26

HARDWARE DESIGN

Pins with different functions in minimum
and maximum modes are listed in Fig. 3-31.

Pins 26, 27 and 28, which were DEN, DT/R
and IO/M in the minimum mode, are
replaced by the status lines SO, S1 and S2.

These three status lines are used by the 8288
to produce seven bus control functions, ena-
bling the 8088 to redefine pins 24, 25 and 29.

Pins 24 and 25 are now used to track the
status of the 8088’s queue (listed in Fig. 3-32).
Pin 29 provides a function called LOCK
which is used to prevent other processors
from using a shared resource while it is being
used by the 8088.

Pins 31 and 30 now implement functions
called Request/Grant 0 and Request/Grant
1. These have the same function as HOLD/
HLDA, but both functions are implemented
on one bi-directional line. This enables the

maximum mode iAPX 88 system to directly
support three bus masters — the 8088 and
two more — instead of the two supported in
the minimum mode. Figure 3-33 shows the
timing for the Request/ Grant function.

In Figure 3-34, an iAPX 88 system is config-
ured in the maximum mode. Status lines SO,
S1and S2 from the 8088 are connected to the
8288, which then produces the system com-
mand and control signals and interface to the
multibus.

The Request/Grant lines can interface to the
8087 and 8089 co-processors as shown.

The 8284A clock generator is used the same
way as in minimum mode systems. The 8289
Bus Arbiter, also included, coordinates the
use of system resources. For a complete dis-
cussion of maximum mode systems, see
Intel’s IAPX 88, 86 User’s Manual.

Figure 3-31. Minimum/Maximum Mode
Pin Assignments

Mode

Pin

Minimum Maximum
31 HOLD RQ/GT0
30 HLDA RQ/GT1
2 R TOCK QSs1 Qso FUNCTION
28 I0/M. S2 0(LOW) [0 |Nooperation
27 DT/R S1
26 DEN S0 0 1 |Firstbyte of opcode from queue
25 ALE QS0
24 iNTA Qs 1(HIGH) | 0 |Emptythe queue
34 SS0 High State 1 1 |Subsequent byte from queue

Figure 3-32. Queue Status Decoding

3-27

HARDWARE DESIGN

Any CLK 20-CLK 120-CLK

T
Cycle Cycle »}=TsorT| Cycle T T Ta
CLk \ 9_\)

(see nlote 2) (see note 3) (see note 4)
RQ/GT
PULSE 1 PULSE PULSE 3
MASTER RQ CPUGT MASTER GT
Master request is sampled by 8088 (see note 1) Master grantis sampled by 8088

1. THE 8088 FLOATS S3, S1, So FROM 1.1.1 STATE
ON THIS EDGE

2. THE 8088 FLOATS AxDx BUS,RD,AND LOCK
ONTHIS EDGE

3. THE OTHER MASTER FLOATS S, S3,So FROM
1.1.1 STATE ON THIS EDGE

4. THE OTHER MASTER FLOATS AxDx BUS, AND
LOCK ON THIS EDGE

Figure 3-33. Request/Grant Sequence Timing (Maximum Mode Only)

3-28

HARDWARE DESIGN

300030 ss3yvaav
0/1118 64

ANl Oda ANl OHa

(z-9122) ((77%4]

vHIHdIYId 0/1] | Ivy¥aHdINad 0/1 Wou Wy
¥M Q¥ ym gy 10 oL

. — SR m— N

N N AN

viva/ss3vaay 113}

00y-¢1
———D|'%%, zoua

ngviva
s i B ...V 0g-2g %10

3-29

ﬁ N cuoa Ia XdN 13534
¢ o 1808 p—— xavay
Sng ss38AAV w15 w0

(

vv8z8

Figure 3-34. iAPX 88/21 Configuration

1
X

Asn8 15O 050 f_H_T_

1531 1SO 0SD

q

SN ANVAWWOO

Applicatio
Examples

§

CHAPTER 4
APPLICATION EXAMPLES

INTRODUCTION

This chapter describes some iAPX 88 system
design examples, ranging from a simple
seven-chip system, to a larger system with
multiple CPU’s and coprocessors. The iAPX
nomenclature is used for configurations using
the 8088 or 8086 with 8089s and 8087s.

MULTIPLEXED SYSTEM

The first iAPX 88 design example is a simple
multiplexed bus system, complete with 8088
CPU, 8284A clock generator, and — depend-
ing on the amount of memory and I/O
desired — 2-5 multiplexed bus components.
This: system demonstates the power, sim-
plicity, and density possible in iAPX 88
designs.

In its smallest configuration, this system
consists of only 4 chips: -

8088 CPU

8284A Clock Generator

8755A-2 2K Bytes EPROM, 16 Lines I/O
8185 1K Bytes RAM

The conﬁgufation we will discuss has 7 chips:

8088 CPU

8284A . Clock Generator

2 x 8755A-2 4K Bytes EPROM, 32 I/O Lines

2 x 8185 2K Bytes RAM

8155-2 256 Bytes RAM, 22 1/0 Lines,
Timer/ Counter

This system is built on a 95 mm X 105 mm
printed circuit board. It draws 400 — 600 mA
from a single 5V power supply and includes
an RS-232C interface, an LED for visual
communication, a RESET switch, and
JUMPER options. A small monitor and
two programs — CHESS and TINY BASIC
— are available* to demonstrate system
capabilities.

*This software is available through “Insite”; the Intel
Users Library.

4-1

This system uses the SMHz 8088 CPU. Its
memory and I/O components are connected
directly to the 8088’s multiplexed address/
data bus, and no wait states are required.

Address Decoding

The memory and' I/O address spaces are
decoded using upper address lines for linear
chip selects. Address lines A10-Al3 are
connected directly to the CS (chip select) and
CE (chip enable) inputs of the memory and
I/ O components. This eliminates the need for
special decoding PROMs or TTL, re-
ducing component count and system com-
plexity.

The address decoding table (Fig. 4-1) lists
address line usage for memory and I/O
address decoding.

CAUTION: For most systems using linear
chip selects, some addresses enable more than
one memory or I/ O device at the same time.
For instance, the 8755A-2 in location E3 is
enables any time All is HIGH. Another
device, the 8185 at E6 is enabled, when A13 is
LOW and Al0 is HIGH. Although the
8755A-2 is uniquely “selected by address
locations F800H-FFFFH and the 8185 is
uniquely selected by 14H-17FFH, both com-

‘ponents are enabled by memory addresses

from COOH to FFFH. Therefore, the pro-
grammer must NOT use this range of

addresses.
1/0
This system provides 54 I/O lines, some

" dedicated to the RS232C interface, the LED

output, and the 8155’s timer/counter. The
other I/O lines are available for general
purpose I/ O. The two 8755As provide 321/ 0O
lines, individually programmable as inputs or
outputs. Three of these lines, PA7, PB0 and
PB7 of E3, implement the RS232C REC-
EIVE-DATA and TRANSMIT-DATA fun-
ctions, and the LED output.

The implementation of the RS232C interface
will be explained for a few interesting tricks

APPLICATION EXAMPLES

Y1
‘ 15MHz
R8 R7. Vece
—| | A
| 510Q D 510Q b3 CLK}|—
. : . IN914
X 7 R1 PORTA<
, 51KQ S1 -
8284A —
$+—{CLK E7 RES 0 © =
]_%:ZF cE2 PORTB<
RESET READY T AlD e
-L A9 525
A8
ALE ADO-<
RD AD7
oW
CLK RESET
READY|—
A1
A8-
%OPBS A19 3 A8-A19
" Vee I A12] TA10 l I |
—— ADO-
MN/MX AD7< ADO-AD7
ALE
RD
WR
10/M
10/M WR
WR RD
. AD0-AD7K | ALE
ALE 8185
RESET CE E5
8155 i
a ADO-AD7K
PORT PORT
C A Vce
T—-c&zz
PORT o
<~ |TIMEROUT B ve
—>{TIMER CLK Cs

Figure 4-0. iAPX 88 Multiplexed System

APPLICATION EXAMPLES

Vce

R6

RCV DATA

SIGNAL GROUND (RS232 PIN 7)

vce D2, D3 = IN 914
PA7 R2:R6 = 18009
CLK PORTAK ' >
R3
R2 T
2N2907 YM'T_—_DATAV
:> PORT B Voo lp, (TORS22PINY
8755A R9 " b2
E3 1802 +—D—
CE2 I
CEl 10u
ADO- ALE =~ RCVDATA
AD7 RD (FROM RS232 PIN 2)
— _RD
oW
A13
A1
A10L A13
| L [T]
1 ALE
RD
WR
10/M
RESET
cE2 |
WR
RD
8185 ALE
| E6
ADO-AD7
CS
CE1

APPLICATION EXAMPLES

RECOMMENDED
ADDRESS LINE USAGE DEVICE ADDRESSING
DEVICE PART A14-A19 | A13 | A12 | A11 | A10 | A9 | A8 | A7-A0 | MEMORY 16 1/0 16
8755A-2 E3 X X X 1 D D|D D F800-FFFF F800-F803
8755A-2 E2 X 1 X 0 D D|D D F000-F7FF F000-F003
8185-2 E6 X 0 X X 1 D|D D 1400-17FF —
E5'(J2 short) X 0 1 X 0 D | D D | 1000-13FF —
8185-2
E5%(J2 open) X 0 X X 0 D |D D 0000-03FF —
8155-2 E1 X X 0 X X X | X D 0000-00FF 0000-0005
LEGEND : X=NOT USED ; 0=CHIP SELECTON 0;1=CHIP SELECT ON 1: D=FULLY DECODED ADDRESS
'J2 short
J2 open

MEMORY
FFFF
8755A-2
(E3) EPROM
F800
8755A-2
(E2) EPROM
EFFF [
NOT USED
1800
8185-2
(E6) RAM
13FF
8185-2 RAM
(E5)&J2 SHORTED
1000
NOT USED
03FF
NOT
. USED | 8155-2
gog‘:: (E5)& J2
8155-2 | OPEN
(E1) RAM
RAM
0000

FTFF

F000

17FF

1400

OFFF

A
0400
03FF

0000

FFFF

F804

F7FF

Foo4

EFFF
A
0006

1/0
NOT USED
F803
8755A-2
(E3)
F800
NOT USED
F003
8755A-2
(E2)
F000
NOT USED
0005
8155-2
(E1)
0000

Figure 4-1. iAPX 88 Demo Board Address Map

4-2

APPLICATION EXAMPLES

that eliminate the need for the +12 volt and -
12 volt power supplies normally required.
The +12 volt power supply was eliminated by
connecting the emitter of T1 to +5V. While
this produces a signal that is not strictly
within the RS232C specification, it works
well on interconnections of less than 10
meters.

This design also employs a useful trick to
eliminate a -12V power supply. Many people
have attempted to eliminate this supply by
driving the TRANSMIT-DATA line bet-
ween GROUND and +5V. Because of a
circuit switching element (Transistor T2), the
low-level signal is always a little higher than
ground and hence won’t work with many
terminals requiring a negative voltage for a
LOW. This design, however, uses the REC-
EIVE-DATA line (presumably driven by a
true RS232C-compatible terminal) as a
source of a negative voltage.

This negative voltage (negative whenever
RECEIVE-DATA is low) charges capacitor
C1 through diode D1. This circuit has been
verified to work when receiving any sequence
of characters, except BREAK.

BREAK causes a very long “1” on REC-
EIVE-DATA; TRANSMIT-DATA event-
ually exhausts the negative charge on cap-

acitor Cl. If desired, a -12 volt supply may be
connected to the junction of C1, D1 and R4.

This RS232C interface is driven by soft-
ware to provide the proper timing for
transmitting and receiving characters.

Multiplexed System #2: The Vest Pocket
Computer

Combining state-of-the-art microprocessor
components results in a usable computer
small enough to be carried in a vest pocket
(Fig. 4.2).

In only 15 square inches (3”x5”), this system
could contain a 2K tiny BASIC operating
system, 16K memory for user programs, and
an I/ O port. The port is designed to interface
to a terminal.

The system is designed with an 8088 CPU,
8755A 1/O Port with EPROM and 21821
RAMs with 4K byte density each.

The 21821 is a new concept in RAM
architecture, interfacing directly on the iAPX
86, 88 or MCS-85 multiplexed bus, respond-
ing directly to controls from the processor.

Contained within the 21821 is a com-
plete memory system on a single piece of
silicon.

L 8
pip>~ |mps| |s 2
e SWITCH VDT| |1 0
, 4 5

8

2
8 . 2 2 2 2
8 8088 8755A-2 2 2 2 2
A 8 8 8 8
2 2 2 2
1 1 1 1

IERESET

Figure 4-2. Vest Pocket Computer Component Layout

APPLICATION EXAMPLES

|0/ﬁL“_—T
74LS14

8088

T

z

o

2
In nluln
N33
zzzz
0000

RESET

=1 READY
2 cLk

2 1

8
;_|
3
©
~

2.

1)
[
N

21{19| 18| 17| 16| 15{ 14} 1

=)
)

510Q

>
o
g
2
10/m
ow
RD
CE
AD10
AD9
AD8
AD7
AD6
ADS
AD4
AD3
AD2
AD1
ADO

CLK 8755A Voo

uccl=

CLK =

READY [~
RESET=
RDY 1}=

8284A

74LS14

)
m)
o

R1
560K Tt
+5 r—“—l

CR1
IN914

|

NOTE: SW2IW A QUAD SPST DIP

Figure 4-3. Vest Pocket Schematic

4-4

APPLICATION EXAMPLES

A2 B
2 £ _ZI
1 8205 GND 1
A0 Ef—+s L
15]= Veolqg —*5 ~
O [0, £
13! 12|
25 *5 2 s[5,
% RDY| 44 apo cs @ RDY|
AD1
AD2
AD3
AD4
AD5
ADS
] A07 AD7
>{ADs ADS
2dapg AD9
}% AD10 21821 AD10 21821
7] AD11 AD11
iF]Ao12 AD12
E‘ AD13 AD13
501 AD14 E AD14
Dlap1s 53] AD15
22 E
21| VE
5] ALE
B,
REFEN UL Voo Vs BHE/B-16 REFEN U/L Vee Vss
2, O—+5 Tll_ 28! 14 - 0 26 O—+5 gl_ ZBE 14_l
— E1 E2 E3 - +5 = — E1 E2 E3 = +5 =
24 [+ zal s[5
7] =3 7 .
Ao 2 RDY 44 apo ©S groy
5 AD1 AD1
21 AD2 AD2
~] AD3 AD3
1 ADa AD4
{ ADs5 5] A0S
— AD6 7 AD6
H ap7 H Ap7
| D8 2] a8
— AD9 AD9
1 AD10 21821 :: AD10 21821
-4 AD11 17 AD11
HAD12 18] AD12
{AD13 12ap1s
1 yd 2 ap1a
H AD15 23] Aots
2 0E 55 OE
7] VE 21] Ve
S ALE 2]ALe
7 g/'log . 2mio_
B e REFEN U/ Ve Vs l BHE/3-16 REFEN UL Voo Vs
1] =

2 3L 2
IR

NOTE: STRAP REFENTO Vss FOR SELF REFRESH

T o s LB L
_EE°1 E2' E3 = 45 =

APPLICATION EXAMPLES

GND 45V 2MHz GND 45V
c1 XTAL | |18 20 40
+5V 3.10pF 12MHz SND v,
16 ce 24 4 Vss Vee 24
X2 8 19 0 5] RESET PAO TS
17 cL = CLK RIDALT- & ne +sv—y o pat -
K 1 RESET [—— . $SO ——:;5 PA2 ——";
“Iflgm GND—{CYSYNC s 2 3 PASEZ— & e
. S Fot " READY READY At 2 PAgpE—
N7 GND—{ AENT PCLK A17 x_g; NC PAS ;_:
NC——pRD2 ’ A16 PAGI—
+5V——AAA RENZ osc %NC Ats 1= PATp=—
R1
CR1 8284A EFI f— NC A4
5K —
7.5 IN91a " ek eno A3 Z 2 PBO—ai—-
+5v—1—K o RES — A12 2|7"° pe1fS—
A 2114° pe2| 34—
5 | N2 55
ESE b3 At10 PB3 |
SWITCH S e 2 36_ P NC
(’ 8088 s 86554 PBAF
U2 A8 U3 PBS F—
swA 27 29 ry il pesf
e o WA |- 1} 5w P72
T tuld DEN RD| 176
= = 10/M :: Hio/m READY |&— N
ALE T ALE ckfP—
33 N /WX AD7%—— 1 ap7
ADG L 184 A0
ADS 171 ADs
- ADa :i 161 ADa
: rest Ap3L2 151 aD3
{Hoco ap2[2 :: AD2
m AD1 o
INTR Apoj& ADO s
CE2_CET
GND 2 91
8, . AB-A15
7
AC
N
4
S GND 45V u1o GND 45V
GND V. GND V
A1 i1 o] < por 12
Atz 2|, :e o1e 0os |2
LAEE] VY [l S— AS : 015 DOs :‘;
o7 b4 4 o1a Dos |-
% ::3 NC a 3|2 pos 15
8205 03 oz o2 s2s2 po2pZ
u7 o4 Pﬂ 1 D11 us DO1
5% L1 A0 1 19
. o5 ot D10 D00
3 06 po—
XTI = b7
FSE P
El 1dste 'bTE—_L
1K BYTES RAM 00000-003FF2114's RAM (MAPPED 0-07FF) =
256 BYTES RAM 03000-030FF8155 RAM/I0 (MAPPED 3000-37FF)
2K BYTES ROM FF800-FFFFF8655A MONITOR (MAPPED 80000-FFFFF) %3
170 Zv—/'
USART COM/STATUS 03801\ 1/0 OR MEMORY
DATA 03800 / (MAPPED 3800-3FFF)
8155 COM/STATUS 3000
PORT A 3001
PORT B 3002 { 170
PORTC 3003 (~ (MAPPED 3000-37FF)
TIMER LOW 3008
TIMER HIGH/MODE 3005
8655 PORT A 800
PORT B 2801 \ 1/0
PORT A DDR 2802 (" (MAPPED 2800-2FFF)
PORT B DDR 2803

NOTE: 1/0 ADDRESSES 0-3FF WILL TALK TO RAM & THEREFORE SHOULD NOT BE USED

Figure 4-4. iAPX 88 Demultiplexed Bus System

4-6

APPLICATION EXAMPLES

GND 45V GND
|20 |40 4
4 Vss Ve L | 24] . GND
L—{RESET TIMER IN S Reser
TIMER OUT CLK
SR 22
N oTR |-
21 14 NC
PAO | RYRDY ==
PAl o TXEMPTY p—
PA2 |
paz |2 , 3 J1
pag 25— oS TRANSMITTED
26 DATA
s uti 330 pF
pas (2 1488 I 10%
PA7 p— 9
8155 29 25 _RE 8251A -
v4 PBO o l————— RXC us
PB1f— N
J— . A 1
'g WR PB2 —2—- P NC '1: WR SYNDET/BD 2= NG
RD PB3 | RD
2 e 33
10/M pBa - v
M ALE PBS % *
PB6 |~
19
2 ao7 pa7 25— £{o7
~§ AD6 D6
:; ADS PCO -:;;— g D5 RxD REC'D DATA
3 e PC1 e~ e
= ans o 2103
5 Aoz pcaH— Upo
2 AD1 PCa -§—— 28 D1
AD0 PCSs 24 bo
CE c/b. TS
P8 12 11
I—G SIGNAL GND
75 ADO-AD7
CLEARTO
—C] &8
L] 6
A T
i READY
8, V] 0 5 o1
7 7 = 1488
GND 45V GND . +5v +5V - >
[s _ lus s | Len ca.co
1 GND V. 5[GND v, [~ 22u8d T .01 utd
5 A9 cc = A9 cc 15V 15V
16 A8 = A8 GND >
17 1. co
T A7 147 =0.014fd
1 o188 15v
3145 =145 -12v >
18 2114 Ae 2114
A3 U9 s U10
7. 11 AD7 1 AD3
A2 1/0; p———-y A2 1704
i 170, 208 & a1 1/03 |12 AD2 —onmon ' ™¢
| s
3 S o, J12__ADS 5] 40 /02 P3__ADI FF800
14 AD4 14 ADO MONITOR
1704 : i 1701 SHADOWED
WE TS WE TS HERE
Iw Ta Jm Ta 80000 512K
496K
é FREE
04000 16K
1/0 &
RAM

4-7

APPLICATION EXAMPLES

Using a dynamic storage cell, the 21821
includes all the necessary support logic such
as refresh control, arbiter, latches, and multi-
plexers. (Fig. 4-3)

iAPX 88 DEMULTIPLEXED BUS SYSTEM

In this application example we will look at an
iAPX 88 system which uses 2114 RAMs
connected to a demultiplexed bus, and an
8251A to implement a serial interface.

As seen in Figure 4-4, the 8088 CPU receives
its CLOCK, READY and RESET signals
from the 8284A.

The control software is in the 8755A
EPROM. This software contains the “boot-
up” routine which tells the CPU how to get
started when the system is reset. It might also
contain a small monitor, an interpreter such
as TINY BASIC, or some game software.

The 8155 provides 256 bytes of RAM,
timer/counter and 22 I/ O lines. Both devices
connect directly to the 8088s multiplexed
address/data bus because they internallly
latch the address when ALE goes LOW.

The majority of the system RAM is provided
by two 2114s. These 1K x 4 static RAMs do
not internally latch the lower 8-bits of address
as the 8755 and 8155 do. For this reason, an
8282 octal latch is used to provide a
demultiplexed address bus. The 8282 looks at
the lower eight bits of address at the
beginning of each machine cycle, and holds it
on the address bus on the fallingedge of ALE.

Note that the 2114s are chip selected, using a
decoded address from the 8205 decoder,
combined with the DEN output of the 8088.
The DEN delays the chip select until the
system is ready for data to be driven onto the
data bus. If this were not done, the 2114s
would output data onto the data bus shortly
after the address appeared on the bus. This
would cause a problem called “bus con-
tention”, where the 8088 is driving address

information on the address/data bus at the
same time the 2114s are beginning to drive
data on that same bus (see Fig. 4-5). This is
prevented by using DEN to delay CS until
after ALE goes LOW.

Universal Synchronous/Asynchronous
Receiver/Transmitter

Another important part of this design is the
8251A USART. The 8251A is a peripheral
device programmed by the CPU to transmit
and receive serial data.

The USART accepts data characters from
the CPU in parallel, and then converts the
characters into a serial data stream for

. . .
transmission. Simultaneously, the 8251A can

receive serial data streams and convert them
into parallel data characters for the CPU.

The 8088 and 8251A interface is quite simple.
Data travels to and from the 8251A via the
8088’s multiplexed address/data bus. The
RD and WR inputs of the 8251A are driven
directly by the 8088’s RD and WR control
lines.

The Chip select is provided by the 8205
address decoder, and address line A0 tells the
USART whether the data bus is transmitting
a data character or a control/status char-
acter.

Baud/Rate Generation

The rate serial data shifts into and out of the
8251A is controlled by the Receiver Clock
(RxC) and Transmitter Clock (TxC) inputs.
They are provided by the TIMER OUT
output from the 8155’s 4-bit counter/ timer.

A demultiplexed system is useful for a
number of applications, including small
control or monitoring systems, dedicated
testing, or games.

The monitor software for the 8755A is
available through Insite, the INTEL users
library. It contains a “bootup” routine,
display/alter memory and registers, single
step, break point, and other functions.

APPLICATION EXAMPLES

A15
: A8-A15 8205 ————0}
A8
——O
DEN
8088
CPU
AD7
: 8282 A0-A7
ADO <
STB
\
2114 SSPT 9% 211a
ALE JDo ljS ja D7
\ D0-D7 DATA J

CHIP SELECT MUST BE DELAYED BY DEN UNTIL ALE GOES LOW TO PREVENT BUS CONTENTION.

Figure 4-5. 2114 Chip Select Connection

cS CS cS CS CS
8284A DECODE 2708 2708 2708 2114 2114
EN
]CLK ? VAWAN PAVAN AVAN N 2\7} AN
DEN H] ﬁ] T A16-A19,
A19/Se| | 8282 >
At6/83[LSIB H }
A15 A8-A15,
i 1 8282 -~
A8 l
ALE STB AO-A7
AD7| | 8282 >
Abo"l [— ADO-AD?,
] 8282
8088
CONTROL/STATUS
8286 >

Figure 4-6. iAPX 88 S100 Bus System

4-9

APPLICATION EXAMPLES

P2,
Pl
PO,
P3
20 20 8 8
[4] [45
Yao “Teroc 't Bho ProG[LEY A0 Sin0
Al AN s Al =
[“Slaz N o 003 a2 _ [a2 —lio
a3 0 O [slas), o A3y WENO) Fals o RE[O
[3lae 1 3lra 2HL] 8 As [Aina
[3las 2708 o3 //iu 2708 o3 [13 as 2014 (2lss 2118
2 e 04 r2ine 04 2 a6 oafl [liae 1704 PRI
[llar 0s a7 os {13 [a7 1703 1Tia7 170312
2N 06 23l0g os 18] [2 A8 N R TIN 1702 P2
22 TARED 4 Na]
A9 o7 =) o7 A9 1701 f-"-As ZTREN
7/ J
r? D7PD6|D5 |D4{D3(D2|D! DO
ao|m e [asfaslas]aclaz]ag]ag)
uie
‘23@ 13012111 }10] |;°0° DI0 12
a22 63— 'l ol oIS
A 212> 002 U DIzt
a20(61 D03 g DI3f
A19 (39— 21004 Di4
Al8[15)>— +{oos o1 5=
M7 121008 0i 6
Al8[i6)>— oo7 17|
? >
+s U
1ol
As(84 o 181000 ST® 010
A9(39 ool oIt
210 FD— ooz g o2
an@ED- 131003 oI3f2
a12 33> 12004 24 piafS
A13[@5)— 13008 o5
A4 (E— 21008 i o
A1s(32>- D07 E D7
9] I =-8282
10
A0 [T - ;: D00 STB DI
A){80C “—"‘——_—Ir‘ﬂol o
A2(BD— 002 o2
A3ED— 154003 U s
A430— 121004 23 piad
AS (29— 131005 015
As(BD— 121008 016 o
A7[@3 DO7GE DOI7
i0s8[22 N0 ST +5 8282
Lac,—" Luie ju
D07 30— 12007 o 72
006[40> Ta{0 08 DI6 ¢
008 (3>— 751008 oI5
00438 {004 U oiar
003(89- 17003 25 oi3ps
00288 181002 o2
0oI (35 pol DIl
20038 1915005 oo —
J— ! 2 —9].s5 8
5005823>—— {2 5 8282
[.4\.;,_’5 uie i
017 [4>—— 8foi7 5% poTHE—
01693~ 016 DO6HF
015[92> ois U poshy
014[31— 2014 26 DO4pT
0l3(42>— 0I3 003H2
012 (41 D12 oo2fg
D ol oo ps
010[35 L loi0 6g DOO

U9 pPiNe

Reprinted by permission from Microfuture.

Figure 4-7. iAPX 88 S100 Schematic

4-10

APPLICATION EXAMPL . 5

M3
M2 -5
WML +3
MO +5 % 8 9
+5 ’ 10
s% 12] ¥ P2
; 1313 4y A Ra R3
|2$ nliol 9 860 560
s 96 97 P8 /2 DIP o A
SWi . I
a] s] ef 7 uf !
2 5\ 6 15
Yo vi Y2 v3 48
. us s)
v
LsI139 '3 X3
1418 EN "
]
2
u27
U
3
s[4
l—— 20a e @9lcLock
‘za 2v|s 24l g
172 DIP SWI &8s, ”ﬁ——ca'suvs»cm
16 ; u9 13— 3]PWRFAIL
3 ' 0—-_1__’“ | Ls3es 98 98]ERROR
3w se EN AEND x 1L 2 o8 T ! o, 238 .
3 AIB/SS _l3s TIREN2 e 1 ! “A mMNW
38 AI7/SS4 MN/MX|+5 I; RDY | gaggnl 3o ——d ey
A16/83 = x2 -3
6 ::/scmc x2[l8 | 4 o0l2 T APl A +3 ror
v2 Rov2{8 €3 8 s
Blal | 22 s XROY
8,8 READY 155 5 READY R2 s6x
7]%e RESET I‘B RESET | NH10|
: [} cLx {2 Tk REsf — = (TS RESET
5 u c6 = 1uf
1 2N 2 i v
a2 19 -
Als 8088 poop2 76]SYNC
ESN HLDA 22 oo3fe — — (G6lPHLOA
22ais wR 22 0 £ 0ol ——(‘s 77)FWR
25 28— 2oz y voefl————— —Galroan
ALE sz . % Uis 22
‘: ADO o 5'? 8282 RI
1>a0 1 INTA _ 9 s _
37402 TEST|23 AL RIS o STB OE L9jcoss
1403 - TEST +s n
={AD4 NTR 18 8,19 +3iNT
ADS o~ i
10 ; uis RPI +5
o]AD6 HoL o|3! s AP T4]HOLD
ADT Jo/i 128 v SoLs U8 ‘oo 000 ': sM1
owR |22 21n o1 o 001 '7 S6)SINTA
gso 24 | 342 U goft3 13 U‘: Hoiz v ool G7]swo
+5— €3 27 o3 :(2) ! I3 g 003 :f 35]souT
E2 05 pI 005 F———————<46]SINP
Fgl 06 : 016 Do6
o7 017 porfB—— GajsHLT
LS138 g4l 2 3 A
\ D14 D o4 {a7)SMEMR
783 sT8_OF RS
n 9 +5
— I 10 "
VR VR3 vR2
I +8v V-IN VOUT +5 2-16V. V-IN V.OuT 12v 6\ VN V-OUT -8v
si+av } l l
Lm323 7812 7908
. Wt L ur AT c2,¢3,69,c13,017, .7 Wt L uratci s ot 2=t
GND €19,C21,22,C23, uf GND 47 GND Y e
car c24,c258 c2s of
cze
T) +
50 100
GND GND

4-11

APPLICATION EXAMPLES

iAPX 88-BASED S100 BUS SYSTEM

One very popular standard for microcompu-
ter systems is the S100 Bus. This application
example describes an S100 system which uses
the iIAPX 88 to implement a high perfor-
mance system which has many other benefits.

First, an iAPX 88-based S100 system is easy
to implement, because the CPU interface is
very similar to the CPUs for which the
standard S100 was originally designed. For
example, the hardware of an 8085-based
S100 CPU card is very similar to this system.

Secondly, because this S100 system is using
an iAPX 88 CPU, standard S100 memory,
I/0, peripherals, and other cards, can take
advantage of the powerful iAPX 88 features
to greatly enhance the capabilities of existing
S100 systems based on the 8080, Z80 or other
8-bit CPU’s.

Another point is that, along with higher
performance, the system also has the advant-
age of the greatly relaxed iAPX 28 bus to
accommodate slower memory, I/O, and
peripheral cards without the performance
degradation of wait states.

The bus also directly supports the iAPX
88’s 1 Megabyte memory address space.

As shown in the block diagram in Figure 4-6,
the system has 3K bytes of EPROM (three
2708’s), 1K of ROM (two 2114s), fully
buffered busses and demultiplexed address
bus. The control and status busses have been
decoded to provide compatible signals for the
S100 bus.

I/ O, peripherals and additional memory are
assumed to be on the other standard S100
cards in the system. A detailed schematic is
shown in Figure 4-7.

PC board and software for this system are
available from Microfuture [1]. The boards
are called the CP88, and the monitor
software the muMon/ 88.

Note 1: Microfuture, P.O. Box 5951, San Jose CA,
95150.

4-12

iAPX 88-BASED CRT CONTROLLER

This application example describes an intel-
ligent CRT controller based on the iAPX 88
and the 8276 Small System CRT controller.
This design demonstrates the power of the
iAPX 88 and LSI chips for a low component
count.

A unique implementation shows how to
eliminate the need for a DMA controller,
while enabling the iAPX 88 to supply
characters directly to the 8276 by means of
interrupt-driven software.

The overhead on the processor is less than
30%, leaving it free to implement intelligent
terminal functions, as local data processing.

The entire design requires only 22 IC
packages.

The heart of the controller is an iAPX 88
operating at 5 MHz (Fig. 4-8). It is supported
by two 8185 (1K x 8) static RAMs, and a
2716 EPROM, containing control software.
An 8251A programmable communication
interface provides synchronous or asynchro-
nous serial communications.

Baud rates are selected by switches on the
board. The baud rate clock is generated by
the 8253 programmable interval timer under
software control.

An 8255A provides three 8-bit parallel I/O
ports, two of which are utilized for keyboard
scanning. The third port is used to sense
option switch settings and to sense the
vertical retrace signal from the 8276 for CRT
synchronization upon reset.

The CRT interface is controlled by an 8276
programmable CRT controller. The CRT
dot and character timing is generated by an
8284A clock generator. A second counter of
the 8253 timer provides the appropriate
horizontal retrace timing for the CRT
monitor. A 2716 EPROM provides a user-
programmable character generator.

A shift register transforms parallel data from

APPLICATION EXAMPLES

the character EPROM into a serial bit stream
to illuminate dots on the CRT screen. The
2716 character generator makes it possible to
display special symbols for word processing
or industrial control applications, or to
display characters and words in a foreign
language.

Screen Memory Feature

One special feature of this design is the IAPX
88s Load String (LODS) instruction to
emulate DMA. This DMA function fills the
8276’s row buffers which must receive 80
characters (one row on the CRT screen) every
617 microseconds. This is done using an
interrupt routine which saves the registers to
be used, points to the first character to be

DMAed, and uses a repeated Load String
(REP LODS) to DMA 40 words (80 bytes) to
the 8276. The routine then checks to see if it is
at the bottom of the screen memory, updates
the character pointer in memory, restores the
registers, and returns from the interrupt.

DMA Emulation

The LODS instruction actually moves each
byte of data from memory to the 8276 in one
machine cycle by using a special decoding
trick to generate both a read signal to
memory and a write signal to the 8276. The
address decoding is set up so that the screen
memory is at memory locations 30H to
7FFH. This memory is also accessed by
memory addresses 1030H through 17FFH.

7

r{D'_|11.34 mHZ

DOT/
8284A CHARACTER
TIMING
' Nmi BRDY LCos { 1 - VRN
8088 BS CS y L HARACTER SHIET |, vioEo 1O
CONOLLER ENERATOR REGISTER CRT
DECODER
cc "G
06
~ FROM
8253
SYSTEM BUS
8253-5 OGRAM/ 8255A5 |
COUNTER/ [™| 82314 ISPLAY KEYBOARD
TIMER EMORY CONTROLLER
SERIA : !
COMMUNICATIONS KEYBOARD STATUS

Figure 4-8. CRT Controller Block Diagram

4-13

APPLICATION EXAMPLES

Any memory reads using addresses 1030H-
17FFH will simultaneously cause a write to
the 8276 row buffers (Fig. 4-9).

In this way, the iAPX 88 emulates DMA by
addressing both the 8185s and 8276, directly
transferring data from the screen memory to
the 8276 row buffers. Other accesses of screen
memory, such as inputting a character from
the ‘keyboard, are done using addresses
between 30H and 7FFH.

Another demonstration of the power of the
iAPX 88 is the routine which recognizes
escape characters (Fig. 4-10).

Using the 1APX 88’s Translate (XLAT)
instruction and flexible addressing, this
routine takes only 9 lines and 22 bytes of
code. It executes in 6.6 microseconds. This
same routine written for the 8085A-2 takes 20

lines, ‘61 bytes, ‘and 31 microseconds. The
iAPX 88 uses fewer than half the lines and
bytes of code, while executmg 4.7 times
faster!

iAPX 88 MULTIPROCESSING SYSTEMS

Using multiple processors in medium-to-
large systems offers several significant advan-
tages over the centralized approach that relies
on a single CPU and extremely fast memory:

1) System tasks may be allocated to special-
purpose processors whose designs are opti-
mized to perform specific tasks simply and
efficiently.

2) Very high levels of performance can be
attained when processors can execute simul-
taneously (parallel/distributed processing).

DATA BUS

DATAFLOW

8088

1/2
7415139
Y

DECODER

ADDRESS
BUS

G
1/2
74LS139

DECODER

A SINGLE 8088 STRING INSTRUCTION
MOVES DATA BYTES FROM THE 8185
RAM TO THE 8276 ROW BUFFER. THE
8088 *‘THINKS”’ IT IS LOADING THE AX
REGISTER.

=]

CS CRT
CONTROLLER

<
S WR

CS RD

SCREEN
MEMORY

8276 8185

Figure 4-9. 8276 Row Buffer Loading

4-14

APPLICATION EXAMPLES

3) Reliability is improved by isolating sys-
tem functions so a failure or error in one part
of the system has a limited effect ‘on the rest
of the system.

4) Modular system design promotes paraltel
development of subsystems breaks the appli-
cation into smaller, more manageable tasks,
and helps isolate the effects of system
modifications.

The iAPX 88 archltecture supports two types
of processors: mdependent processors and
COProcessors.

An independent processor executes its own
instruction stream. The 8088 CPU and 8089
I/O Processor are examples of independent
processors. An 8088 typically executes a
program in response to an lnterrupt The IOP
starts its channels in response to an interrupt-
like signal called a channel attention; this
signal is typically issued by a CPU.

The iAPX 88 product line architecture also
supports processor extensions. The 8087
Numeric Processor Extension is an example.
A special interface, designed into the 8088,
allows -this. type of processor to be ac-
comodated.

The processor extension adds f_additional
registers, data types, and instruction re-
sources directly to the system. When one 8087
is configured with one 8089 and an 8088, the
system is referred to as 1APX88/ 21 (Fig.
4-11). i

iAPX 88 Multiprocessor Interface

The iAPX 88 architecture simplifies the

development of multiple-processor systems
by providing facilities for coordinating: the
interaction of the processors. The iAPX 88
provides built-in solutions to two classic
multiprocessing coordination: problems: bus
arbitration and mutual exclusion.

Bus arbitration may be performed by the bus
request/grant logic contained in each of the
processors (local bus arbitration), by 8289

4-15

bus arbiters (system bus arbitration), or by a
combination of the two, when processors
have access to multiple shared busses. In all
cases, the arbitration mechanism operates
invisibly to software.

For mutual exclusion, each processor has a
LOCK (bus lock) signal (program activated),
to prevent other processors from obtaining a
shared system bus.

The JOP may lock the bus during a DMA
transfer -to ensure both that the transfer
completes in the shortest possible time, and
that another processor does not access the
target of the transfer (e.g., a buffer) while it is
begin updated.

Each subsystem can examine and update a
memory byte. with the bus locked, using a
LOCK prefix with the XCHG instruction.
This instruction can be used to implement a
semaphore mechanism for controlling the
access of multiple processors to shared
resources. A semaphore is a variable that
indicates whether a resource, such as a buffer
or a pointer, is “available” or “in use.”

One multiprocessing system is shown in
Figure 4-12. This iAPX system uses the 8088
CPU to-perform data processing activities.

XOR AX,AX ; clear AX

MOV BX,ESCTBL ;load table pointer

MOV AL,USCHR ;readcharacter

CMP AL,41H ; check for 41H (lowest

8 possible escape character

value)

JL SETUP ; not valid

CMP AL, 48H ; check for 48H (highest
possible escape character
value)

JG SETUP ; not valid

XLAT ; translate to routine address

JMP (AX)

Figure 4-10. Escape Character Recognition Code

APPLICATION EXAMPLES

ST0HLNOD -SNAILTINW

" _

WYH/WOH WILSAS

T

STOHLNOD ~SNAILLTINN

_ N

W3LSASANS ONISSIO0Hd V1iva

W3LSASENS DNISSIO0Hd O/I

4 SNEWILSAS .SNAILINN)
e L4
'S _ 4 g N _
X y A
2 .
437704LNOO sng Y3llgyy sng S3IHOLY1 ANV SIHOLY1ANY ¥3Ligy¥y sng ¥31704LNOD SNE
8828 6828 SHIAITOSNYHL SHINFOSNVHL 6828 8828
4 N\ ' ;\/v
- 4
1
1
1
[}
[}
1 dol
! 6808
m (v ~
[}
! SIHOLY1 ANY SIHOLY1 ANV /
! 3 o0z/8 | SHIAITOSNVHL SHIAIFOSNVHL /
| R e
A(Y |f/ . n \\
\ Vs
\
¥37704LNOD Sng HOLYHINID %0010 | /| ¥o1vyaN3® %0010
8828 V828 N B e s vv8cs
12/88 XdV!

p c N) VAR
< SNg1v201 > 4 SNg 0/l >
v L4 N v

$304N0S3Y Wvd/Wod
Wwo01 a3ddVYW O/1 S301A3Q 0/1

Figure 4-11. iAPX 88 Multiprocessing System

4-16

APPLICATION EXAMPLES

:

13S3d
AQv3d

A0
V1828

300030 SS3HAav
0/1Lig st
AMOI
[T INT oua INI oHa INI oHd sty e —
WH3IHdIYAd | [1vH3IHdIYad ;
o/1 o/l v v v
%ova %ova AERE)
M ay /so | fumay /sd Loda)
'Y » A A » viva/ss3vaay b 1X3 fee—d
oQ-nD .
! | e K== 50, zouale
Z¢1X3
A n _ _ 30}= 6808
_ I_I I_I viva I_I -I_l 1l P Rbel L o
r =1 r T r A AQY3H |
L_— — 1QULNOD ANV | |30023a| |30023q| [—°s-’s
300230 0/1 Wou Wvd [| 13534 f—
.|1|||_ _.|..n.._ _||_|._ Gﬁz
u 5 i
- — — o A
1l l 1 \(IWII sna ssawaav
°LD/DY
- °g-Lq
c<|m~<
- 8808
- 0gzg 13534 AL
- AQvay
XW/NIN Y10 fe

Figure 4-12. Typical iAPX 88 Local Mode Configuration

4-17

APFLICATION EXAMPLES

I/O intensive tasks, such as DMA, are
handled by the 8089 I/O Processor. This
configuration is said to use the IOP :n local
mode because the 8088 and the 8089 . hare all
the system resources and the comm >n local
bus. The system name for the 8(s8/8089
combination is iAPX 88/11.

Use of the system resources is arbitrated by
the Request/Grant (RQ/GT) line which
serves the same function as HOLD/HLDA
in minimum mode. This enables the 8089 to
gain control of the system to read parameter
blocks from memory, perform DMA, or
execute other I/ O processing tasks.

Figure 4-11 is a block diagram of an iAPX
88/21 system. Here the 10 processor is said to
be in remote mode because it has its cwn local
resources separate from those of the 8088.

The processors communicate with each
other and can share resources via the
MULTIBUS™ system bus. Control of the
MULTIBUS™ is handled by the 8289 Bus
Arbiter. Note that each subsystem has its
own 8289 to access the system bus in order
to use shared resources and communicate

+L
L1

with the other subsystem.

An example of one possible configuration for
the 8089 in Remote :‘Mode is shown in Figure
4-13. This subsystem has its own local I/O
and memory resources. For many systems of
this type, a large percentage of th~ 8089’s
tasks will use its local resources and not

require use of the multimaster system bus.

But, when the 8089 does need to use shared
resources, the 8289 will obtain control of the

4-18

system bus for the 8089. The 8289s in the
system will assure that bus contention and
deadlock do not occur.

Some systems will have several separate data
processing tasks which can all be operated on
at the same time. This could use a con-
figuration such as Figure 4-14, which has two
iAPX 88/10 subsystems and one iIAPX 86/ 10
subsystem. This could easily be expanded by
adding Numeric Data Processors (iIAPX
88/20) 8089 I/O Processors, and/or more
1APX 88, 86 subsystems. Each subsystem has
its own local bus on which it can attach
its own resources.

In this system, the LOCK output of the
processors can be very important. When one
subsystem begins an operation such as a read-
modify-write using a shared resource, the
CPU can use the LOCK to assure that the
operation is completed before another sub-
system can take control of the system bus.

The LOCK signal tells the 8288 and 8289 that
control of the bus must not be given up
between the two bus cycles of this type of
instruction. In this way, an exchange instruct-
ion can be used to set a semaphore flag
without the possibility of losing the bus
between the read and write cycles of the
exchange.

The iAPX 88 architecture promotes modular
multiprocessing designs. The maximum
mode interface with the 8288 Bus Controller
and 8289 Bus Arbiter provide all the signals
necessary for implementing multimaster
busses and greatly simplifying the design of
large systems.

APPLICATION EXAMPLES

: LOCAL DATA :

A, FROM CPU
A,;-A, PROM CPU
1/0 PORT
i
D 1/0 WRITE COMMAND
ECOD| /O WRITE C
EAD,
WAIT STATE
CAL 8284A
MENORY GENERATOR
WRITE ONE SHOT ROY1 SYSTEM RESET
(IF WAIT STATES ==l (IE INIT)
7aN REQUIRED) 4 RESET RST |
READY
RovZI€ TRANSFER ACKNOWLEDGE
RENT (1E XACK)
1 RENZ CLK
1/0 ADDRESS \
DECODE
LOGIC
A \
-3 CLK
MULTIMASTER
ca 5088 CONTROL BUS
oLk I —
DACK o=
DRQ »-|DRQ1 S-S,
cs KEN
AEN
vo INT »{ext1
PERIPHERAL TO/EROM
ANOTHER I0P
~«—p|Ra/aT ok Y
DACK _'l AEN
DRQ —»-{0R02 _
—»{cs 5.5, 5.5,
INT »1EXT2 pApg.aD7
o A8-A19
PERIPHERAL CLK MRDCp—————————————
1 {0CK MWT C peeeeeeeeeeeeeeeeee
oCB:hNTA 8289
IORC
owc Vee
0B j——m———
ALE
PDEN DT/R_DEN
GND
¢ | y ¥
OE sT8 OE sTB
MULTIMASTER
LOCAL ADDRESS ADDRESS (A5-Aq]
<: s282/83 K S s282/83 >
Yy v \ {]
OE T T OE
MULTIMASTER DATA (Dy-D,)
8286/87 8286/87

<

>

Figure 4-13. Typical 8089 Remote Mode Configuration

4-19

APPLICATION EXAMPLES

: (LOCAL BUS

ADO-AD7
A8-A19

So

5 8088

§ S
x <

B 33

w |« OE QeI S 2 1= [X |x AENT x > |
|o|5 L oen @018 3 zen "”""’6\84 33

ol w

«

8287 8283 L—JDTR 8288 8289 8284A

sTB ALE I“Q' :E E E EE 5 g} RDY1
=

COMMAND BUS

ADDRESS BUS

I

DATA BUS

S O = 1) N N B N

|
: sT8 ALE 3 EEE EE =1 ﬁ__l_ »{ROY1 |
1) x| =2
I 8287 8283 —]oTR 8288 8289 8284A :
X
' = DEN AEN AEN x [x 'g z é |; NH]
| 85 & | [8mks 131515 30 15 ¥ Julw
I = =1 (&] L91|
[= |
I |
1
| <— H— |
| oB 33 '
| : |
5 8088 |
| © Se
| << l
| LR
<VL 4J |
| LOCAL BUS
| |

Figure 4-14. iAPX 86,88 Multiprocessing System

4-20

APPLICATION EXAMPLES

PRIORITY 1

LOCAL BUS

A16-A19 p—o

"
o
— <
so 2
s < 8086
.s_zx E
5
B =3
- O x

[oF LDENSW";’EW mﬁﬁ"*EEg
o]
=] I
S
8287 8283 L—JDpTR 8288 8289 8284A
ZEREIR 2 sEos
sTB ALE _ S "Eulz 18 H = OE)
oB @ 0 o I | o = « x
z [2__f1&=
FUNRESS [Uy g RSO 72 (Y U hN B S N S
T
- e —_——_————eee | | — — —— — ~—
L

SYSTEM
MEMORY

SYSTEM
o

3 2 1

PRIORITY
ENCODER

DECODER

]

PRIORITY RESOLVING
MODULE (PARALLEL)

-

— —————— — — — — — — — — — —

4-21

Supl

- i

MICROCOMPUTER OVERVIEW

WHAT IS A MICROCOMPUTER?

A Microcomputer is a system of one or more
integrated circuit devices using semiconduc-
tor technology and digital logic to implement
large computer functions on a smaller scale.

Computer miniaturization is a . leap-frog
technology, with microcomputers getting
smaller, faster, and cheaper each year.

There are three main elements in a micro-
computer system; each has a special role to
play in the overall operation of the computer
system. These three elements are shown in
Figure 1. They are the central processing unit
(CPU), the memory, and the input/output
(IO) ports.

The CPU does the actual work of the micro-
computer system: numerical processing (addi-
tions, subtractions, etc.) logical operations,
and timing functions.

The CPU is told what to do by a set of
instructions, called a program, stored in the
microcomputer’s memory. Data is also kept

in the memory and processed according to
programmed instructions. The input/output
(I0) ports allow the CPU to communicate
with the outside world.

The program(s) are specially designed sec-
tions of machine code that perform the
following, to name a few:

® numeric calculation

® communication with Input/ Output devices

® organization and manipulation of data
structures

® response to expected and unexpected con-
ditions and program interrupts

¢ translation of Input/Output data to/from
machine-usable format

® coordination, monitoring, and timing of
events , j

While it may appear that the computer does
many things simultaneously, the CPU exe-
cutes just one instruction at a time. Instruc-
tion times vary depending on:the type of
instruction, and the speed of memory or I/ O
device.

.

< -~ ADDRESSBUS

MEMORY

170

e | Gt O 1y

< DAT

ABUS >

< ~ CONTROLBUS

Figure S-1. Microcomputer Block Diagram

S-1

SUPPLEMENT

The CPU reads in data or control signals
through the input ports and sends data or
control signals to the outside world through
the output ports.

System input/output devices may also be
called peripherals. Many different types of
peripherals exist: some peripheral devices can
do limited processing on the data given to
them by the CPU.

In a typical microcomputer-based CRT ter-
minal, the input ports are connected to
keyboard push buttons while the output
ports are connected to the hardware that
generates the characters displayed on the
CRT screen.

In addition to reading input characters and
displaying them on the screen, the CPU may
also scroll character lines up the screen and
perform special functions such as instructing
the displayed characters to blink or to be
highlighted.,

In this CRT application, as with others, the
CPU provides the real intelligence in the
microcomputer system and relies on memory
and I/ O devices for support.

WHAT ARE DATA, ADDRESS AND
CONTROL BUSSES?

The CPU is physically connected to the
memory and I/ O devices by the bus interface
which is a connection of parallel wires (some-
times called “lines”) that perform a similar
function. As Figure 1 shows, there are three
different busses that interface a CPU to other
system components. They are the data bus,
the address bus, and the control bus.

The data bus, as the name implies, is the set
of wires over which data passes between the
CPU and the memory and I/ O. The data can
either be instructions for the CPU, or infor-
mation the CPU is passing to or from I/O
ports.

S-2

The CPU uses the address bus to select the
desired memory or I/ O device by providing a
unique address that corresponds to one of the
many memory or I/ O elements in the system.

The control bus contains control lines for
signals .to the memory and I/ O devices and
specifies whether data is to go into or out of
the CPU and exactly when the data is being
transferred.

From one microcomputer to another, the
number of bus lines may vary. A microcom-
puter is called an “8-bit machine” if there are
eight lines in the data bus and the CPU
communicates with memory and I/ O using
8-bit bytes. Likewise, a “16-bit machine” has
a 16-bit wide data bus.

Also, the number of address bus lines varies
from one microcomputer to another. Some
smaller machines, like the Intel 8088 have
only 14 lines in the address bus, providing
unique addressability of about 16,000 pieces
of information. (All the signals emanating
from a microprocessor are interpreted in
terms of voltage levels (high or low) on the
bus lines. The signals on the address bus
represent a binary number: HIGH voltages
are 1’s, LOW voltage are 0’s. Thus, a 14-line
address bus can specify up to 214 or 16,384
unique memory addresses).

In an 8-bit machine, each address (sometimes
called “location™) can point to an 8-bit quan-
tity of data or program information. The
Intel 8080 has 16 lines in the address bus,
providing addressability of over 65,000 bytes.

The Intel 8088, described herein, actually has
20 lines in its address bus, providing the
binary addressability for over 1 million bytes
of information.

SUPPLEMENT

HOW ARE MACHINE CYCLES,
INTERRUPTS, AND DIRECT MEMORY
ACCESS RELATED?

Machine Cycles

As the microcomputer program executes,
data is transferred to and from memory and
I/O devices. Each time the CPU transfers
data between itself and one of the other parts
of the system, we call this the execution of a
machine cycle (or “bus cycle”). Machine
cycles include operations like instruction
fetch, memory read, memory write, read
Jfrom an input port, or a write to an output
port. The timing of these operations is coor-
dinated by the CPU clock signal derived
from CPU timing sources from an external
crystal or other frequency source.

At the beginning of a machine cycle, the
CPU issues a binary code to the address bus
to identify the memory location or I/O
device to be accessed. Next, the CPU issues
an activity command on the control bus.
Third, the CPU either receives or transmits
data over the data bus.

Following the data transfer, the CPU pre-
pares to issue the next memory or 1/0O
address for the next machine cycle. In this
manner, the CPU cycles through the pro-
grammed instructions, performing logical
arithmetic and I/ O operations as required.

The CPU keeps track of the instruction
sequence with the program counter register
containing the binary address of the next
instruction in memory.

Normally, the program counter is incre-
mented after a given instruction is executed.
The CPU automatically fetches instructions
from memory, decodes them, and executes
them in sequence, until the program ends, or,
until special instructions tell the CPU to exe-
cute instructions in other parts of program
memory.

S-3

Certain situations can interrupt the normal
sequential flow of instruction execution. For
example, a wait state may be imposed in a
given machine cycle to provide more time for
a memory or I/O device to communicate
with the CPU. Wait states are needed when a
fast microprocessor needs to communicate
with a slow memory. Here’s why:

Once the CPU addresses memory, it cannot
proceed until the memory responds. While
most memories respond faster than required,
some cannot supply the addressed byte
within the minimum time established by the
CPU clock. Therefore, the memory must
request a wait state when it receives the CPU
signal that a memory read or write operation
has commenced. After the memory responds,
it signals the CPU to leave the wait state and
continue processing.

Another situation that alters sequential instruc-
tion execution is an interrupt. Interrupts
actually improve CPU efficiency. For exam-
ple, consider a computer that is processing a
large volume of data, portions of which are
to be output to a printer. The CPU can out-
put to the printer in one machine cycle, but
the printer may take many machine cycles to
actually print the characters specified by the
data byte. So, the CPU must remain idle
until the printer can accept the next data byte
from the CPU, or, if an interrupt capability is
implemented, the CPU can output to the
printer and then return to other data process-
ing. When the printer is ready to accept the
next data byte, it signals the CPU via special
interrupt control line. When the CPU an-
swers the interrupt it suspends main program
execution and automatically switches to the
instructions that output to the printer, after
which, the CPU continues with main pro-
gram execution where processing was
suspended.

SUPPLEMENT

Priority interrupt structures are possible
where several interrupting devices share the
same CPU. If two or more interrupts occur
simultaneously, the one with the higher prior-
ity is serviced first.

Another feature that improves microproces-
sor throughput is direct memory access,
otherwise called DMA. In ordinary input/
output operations, the CPU itself supervises
the entire data transfer as it executes I/O
instructions to transfer data from the input
device to the CPU and then from the CPU to
specified memory location. Similarly, data
going from memory to an output device also
goes by way of the CPU.

Some peripheral devices transfer information
to/from memory faster than the CPU can
accomplish the transfer under program con-
trol. In this case, using DMA (direct memory
access) the CPU allows the peripheral device
to hold and control the bus transfer the data
directly to/from memory without involving
the CPU itself.

When the DMA transfer is done, the peri-
pheral reieases the hoid request signai. The
CPU then resumes processing instructions
where it left off.

The DMA allows the high speed data
transfers required in many of today’s micro-
computer systems with hard disk controllers,
and CRT terminals; etc.

WHAT’S INSIDE THE CPU?

A typical microprocessor CPU consists of the
following three functional units: The regis-
ters, arithmetic/logic unit (ALU), and control
circuitry, described below.

Registers provide temporary storage within
the CPU for status codes, memory addresses,
and other information useful to the CPU and

S-4

programmer during program execution. Dif-
ferent microprocessors have different num-
bers and sizes of registers. In general, 8-bit
microprocessors have 8-bit registers and 16-
bit microprocessors have 16 bits in each
register.

All CPUs contain an arithmetic logic unit,
often referred to as the ALU. The ALU, as its
name implies, is the CPU hardware that per-
forms arithmetic and logical operations on
binary data. The ALU contains an adder to
perform binary arithmetic manipulations on
data obtained from memory, the registers or
other inputs. Some ALU’s perform more
complex arithmetic operations such as mul-
tiplication and division. ALU’s also provide
other functions including Boolean logic and
data shifting by one or more bit positions.
The ALU also contains flag bits that signal
the results of arithmetic and logical manipu-
lations such as sign, zero, carry, and parity
information. These flag bits frequently de-
termine where the program will continue
after the current instruction is executed.

The control circuitry coordinates all micro-
processor activity. Using clock inputs, the
control circuitry maintains the proper
sequence of events required for any process-
ing task. The control circuitry decodes the
instruction bits and issues control signals to
units both internal and external to the CPU
to perform the proper processing action. It is
the control circuitry that responds to external
signals, such as interrupt or wait requests.

As mentioned before, an interrupt request
will cause the control circuitry to temporarily
interrupt the program in process, and direct
the microcomputer to execute a special inter-
rupt service program. A wait request causes
the control circuitry to suspend processing of
the current instruction until the memory or
I/ O port is ready with the data.

SUPPLEMENT

Addressing Modes

The address that the CPU provides on the
address lines selects one specific memory or
I/O device from all those available. This
address can be generated in different ways
depending on the operation being performed.
For an instruction fetch, the address comes
from the CPU program counter register.
While executing an instruction, this address
can be generated many different ways, called
addressing modes.

In the simplest addressing mode, the desired
data item is contained within the instruction
being executed. In a more complex address-
ing mode the instruction contains the mem-
ory address of the data. Or, the instruction
may reference a CPU register that contains
the memory address of the data.

And finally within some microprocessors, the
instruction may instruct the control circuitry
to generate a complex address that is the sum
of several address components such as multi-
ple registers plus data contained in the
instruction itself.

Generally, the most powerful micropro-
cessors are the ones with the widest variety
of addressing modes available to the
programmer.

When you put it all together: the microcom-
puter bus structure, the CPU registers, the
addressing modes, and the instructions them-
selves, you have the total microcomputer
architecture. The many available microcom-
puters have many different architectures
from which the system designer has to choose
in selecting a microcomputer for this
application.

; . Lo v RS & I
I L - Pooen R TR . o .
i - - B E s N . o I o B - .
. . T e toen : .
Tl PR St IR
. oy s - - . coi L R - R
. S T H K PR e i - ? Y G
: . . . R . . sl .
SR S : i it : Fioo Lo Ry S [RAE DR § I T
. : o 2 . i <.
. . T T : : B : PETIE I : B . :

Appendix

APPENDIX

Benchmark Report:
Intel® IAPX 88 vs
Zilog Z80

280 is a registered trademark of Zilog Corporation.

Contents |

INTRODUCTION it iiin e 1
PROCESSORDESCRIPTION 1
FAPX B8 . .ottt i e 1
Table 1. Architectural Features 2
ZIOGZBO . oiet et e 3
PERFORMANCE MEASUREMENTS 3
BENCHMARK PROGRAM DESCRIPTIONS 4
RESULTS it 5
PERFORMANCE COMPARISON TABLES
Table 2. Execution Times (iIAPX 88 vs Z80A). 5
Table 3. Execution Times (iIAPX 88 vs Z80B)...... 6
Table 4. Execution Times with Comparable
Memory Access Times: (IAPX 88 vs Z80A). 6
Table 5. Execution Times with Comparable
Memory Access Times: (IAPX 88 vs Z80B) 7
Table 6. Ease of Programming................. 7
Table 7. Memory Utilization.................... 8
PERFORMANCE COMPARISON GRAPHS
Graph I. Normalized Average Throughput........ 8
Graph ll. Normalized Average Program Length
andCodeSizeiiiiiiiiian.. 8
CONCLUSIONttt 9
APPENDIX. BENCHMARK PROGRAM CODE
AND FLOWCHARTS 1

AFN-01664A

APPENDIX

INTRODUCTION

This benchmark report compares the capabilities of
Intel’s iAPX 88/10 microprocessor with those of the
Zilog Z80. The purpose of the report is to aid the user in
his evaluation of the two processors, and to provide him
with some of the information he will need in making a
knowledgeable decision regarding which processor best
satisfies the requirements of his application.

Because system requirements can vary greatly from one
application to the next, no one program can adequately
display the capabilities of each processor. For this
reason, ten programs have been chosen to demonstrate
the performance of the iAPX 88/10 and Z80 in several
areas. The benchmark programs cover some of the basic
tasks which are relevant to many of the applications for
which these two processors might be considered. These
ten programs demonstrate the processors capabilities in
the areas of Data Manipulation, Computation, and
Processor Control. Each program was defined in such a
way as to be relatively straightforward, while still allow-
ing the processors to use their instruction set efficiently
in implementing the program.

The benchmark programs were used to evaluate the
iAPX 88/10 and Z80 on the basis of execution speed,
ease of programming (number of lines of code) and
memory usage. These factors were considered because
they are often the key requirements evaluated when a
design decision is made. Execution speed is a direct
measure of how fast a processor will complete a task.
This can be the critical requirement for many real-time
control or multi-user systems. Here, cost may not be the
primary issue because a less expensive but slower system
may be inadequate, regardless of the cost savings. On
the other hand, many systems do have critical cost
requirements for which it may make sense to sacrifice
some execution speed in order to reduce costs. For a
memory intensive system, the cost can be reduced
significantly by using less memory, or less expensive
lower speed memory. For this reason, coding efficiency
and memory access time were examined to help evaluate
price/performance tradeoffs. Another factor, the ease
of programming, is becoming more and more important
as the cost of memory decreases and the amount of soft-
ware in the typical microprocessor application rapidly
grows. For many applications, software development
costs have become greater than hardware development
costs. This means that the total development costs of
such a project can be substantially reduced by using the
processor which accomplishes the most in the least
number of lines of code. To demonstrate performance
in this area, the processors have been evaluated on the
basis of the number of lines of code required for each
program which has been defined as ‘‘ease of pro-
gramming.”’

The benchmark programs in this report were written for
the purpose of comparing the iAPX 88/10 and Z80
microprocessors. They should be used only as a guide in

evaluating processor performance and are not an abso-
lute measure of performance for all applications. The
programs were written to perform the tasks in a clear
and straightforward manner. They do not necessarily
show an optimized implementation of the task for either
processor. The benchmark programs do, however, pro-
vide relevant information and a consistent comparison
which may be useful to the designer in choosing the
microprocessor which delivers the best solution to the
requirements of his design.

PROCESSOR DESCRIPTION

A brief description of some of the key features of the
iAPX 88 and Z80 is included here and in Table 1. The
topics discussed are Architecture, Memory Timing,
Instruction Sets, and Addressing Modes. For more com-
plete descriptions, refer to Intel’s 8086 Family Users
Manual and Zilog’s Z80 Programming Manual or other
related literature. Throughout this document iAPX 88
will refer to a 5 MHz system using the 8088 CPU, while
Z80A and Z80B will refer to 4 MHz and 6 MHz systems
using the Z80 CPU.

Intel iAPX 88

The Intel 8088 (or 88/10) is the host processor of the
iAPX 88 microcomputer system. The 88/10 is an
N-channel MOS microprocessor which currently has a
maximum clock rate of S MHz. Internally the 88/10is a
microcoded 16-bit processor which multiplexes a 16-bit
internal data bus onto an 8-bit system data bus for
external communication. The address space is 1
Megabyte which is segmented to support modular pro-
gramming. Except for the implementation of the Bus
Interface Unit, the 88/10 is identical to the Intel 86/10
mMiCroprocessor.

The architecture of the 88/10 is divided into two
separate processing units, the Bus Interface Unit (BIU)
and the Execution Unit (EU). These two units perform
separate functions in parallel to maximize throughput.

The EU contains the 16-bit arithmetic/logic unit (ALU)
as well as the general registers and flags of the CPU. It is
responsible for executing instructions, and communi-
cates only with the BIU. The BIU performs all bus
operations needed by the EU. It contains the segment
registers, the instruction pointer, the bus control logic
and the instruction queue. Because the BIU operates in
parallel with the EU, instruction fetches overlap instruc-
tion execution. The result is efficient utilization of the
system bus and transparent instruction prefetch.

The 88/10 contains three sets of four 16-bit registers,
and nine one-bit flags. The four data group registers,
AX, BX, CX and DX, as well as the four pointer and in-
dex registers, SP, BP, SI and DI, are all 16-bits wide and
can be used as source and destination in most arithmetic
and logic operations. All eight of these general registers
function as accumulators for many instructions. The
data group registers, AX, BX, CX and DX can also be

AFN-01664A

APPENDIX

Table 1. Architectural Features

Feature iAPX 88/10 280
Memory Addressability 1 megabyte | 64K bytes
General Registers
Number and Size* 8x 16 or 7% 8 or
8x8 and 1x 8 and
4x16 3x16
Coprocessor Compatibility Yes No
Instruction Sizes (bytes) 1,2,3,4,5,6 1,2,3,4
Operand Addressing Modes
Register Yes Yes
Immediate Yes Yes
Direct Address Yes Yes
Register Indirect Yes Yes
Indexed or Based Yes Yes
Base + Indexed Yes No
Base + Displacement Yes Yes
Base + Indexed + Displacement Yes No
Auto Increment/Decrement Yes Yes
Data Types
BCD Digits Yes Yes
ASCII Digits Yes No
Bytes Yes Yes
Words Yes Yes
Unsigned Integers Yes Yes
Signed Integers Yes Yes
General Two Operand
Operations
Reg with Reg to Reg Yes Yes
Reg with Mem to Reg Yes Yes
Reg with Mem to Mem Yes No
Reg with Imed to Reg Yes Yes
Mem with Imed to Mem Yes No
Mem with Mem to Mem Yes** Yes**
Interrupts
NMI Yes Yes
Software Interrupts (#) Yes (256) Yes (8)
Maskable Hardware
Interrupts (#) Yes (256) Yes (256)
Memory Access Time 460 ns 250 ns/
140 ns***

NOTES:

*APX 88/10: The AX, BX, CX and DX registers can be used as four 16-bit
registers, or as eight 8-bit registers. With the.index and pointer registers, this
gives eight 16-bit registers, or eight 8-bit and four 16-bit registers.

Z80: Each of the BC, DE, and HL registers can be used as two 8-bit registers
or a single 16-bit register. The A register is an eight bit accumulator. The
alternate register set can be used for exchanges only (general logic instruc-
tions are not supported by the alternate register set).

**For string instructions only.

***250 ns for the Z80A, and 140 ns for the Z80B.

used as eight 8-bit accumulators for byte operations. In
addition to their general register functions, the pointer
and index registers also serve as address registers. The SI
and DI registers function as the source and destination
indexes for the string operations. The Stack Pointer
register (SP) is used in stack operations, and the BP
register is a base pointer for stack relative Based
Addressing modes frequently used in high level

language programming. The four 16-bit segment regis_-
ters CS, DS, SS and ES, provide memory segmentation
expanding the address space to one megabyte.

The iAPX 88 uses a four clock basic bus cycle. The nor-
mal memory access time is 460 nsec. To use memories
slower than this, wait states of 200 nsec can be added.
Using one wait state produces a memory access time of
660 nsec. Adding one wait state to the iAPX 88 reduces
the throughput only approximately 10% because wait
states are partially hidden by the queue. For a non-
queued ‘machine such as the Z80, the throughput will
typically be reduced about 20%.

The iAPX 88/10 instruction set operates on bits, BCD
digits, ASCII digits, 8-bit bytes, 16-bit words, and
signed or unsigned integers. Many of the two operand
instructions allow both operands to reside in registers,
or one in a register and one in memory. The order of the
operands is interchangeable, and the location of either
source operand may serve as the destination for the
result. The arithmetic instructions include 8- or 16-bit
Add, Subtract, Multiply, Divide and Compare of signed
or unsigned integer values. The iAPX 88 instructions
are identical to those of the iIAPX 86 providing complete
software compatibility. Although this report considers
only single processor systems, the iAPX 88 has the
unique compatibility with the 8087 numeric data proc-
essor to extend the data types to include 32-bit integers
as well as short (32-bit), long (64-bit), and extended
(80-bit) floating point numbers, and decimal numbers
of up to 18 digits. Adding an 8087 also adds 68 addi-
tional instructions and eight 80-bit registers.

Twenty-four addressing modes are available to directly
or indirectly access data and operands. These modes
allow from one to four component addressing using
combinations of segment, base, and index registers,
with optional 8- or 16-bit displacements. The string
instructions provide auto increment and auto decrement
addressing, memory to memory operations, and have an
optional repeat prefix for automatically repeating the
string instruction without re-fetching the opcode from
memory.

Like the iAPX 86, the iAPX 88 has two modes of opera-
tion. In the minimum mode, the iAPX 88 supports the
hold/hold acknowledge protocol to enable bus control
to be transferred to another bus master such as a DMA
controller. In the maximum mode it supports two re-
quest/grant lines, each of which can support multiple
bus masters for multiprocessor designs using the 8087
Numeric Data Processor and/or the 8089 170 Processor
(IAPX 88/20, iAPX 88/21, iAPX 88/11). This mode
also adds support for multiprocessor configurations and
Multibus interface.

The iAPX 88 provides nonmaskable software (internal)
interrupts and maskable or nonmaskable hardware (ex-
ternal) interrupts. The interrupt structure supports up to
256 different interrupt types using an interrupt vector
table located in memory.

AFN-01664A

APPENDIX

Zilog Z80

The Z80 is an eight bit N-channel MOS microprocessor
currently available in two versions, the Z80A and Z80B.
The maximum clock rates are 4 MHz for the Z80A and
6 MHz for the Z80B. Both speed selections- are used in
benchmark timing.

The Z80 registers are grouped into the main, alternate
and special purpose register sets. The main and alternate
register sets are two identical sets of eight-bit registers.
Each set consists of eight registers, one accumulator
(A), one flag register (F), and six general purpose regis-
ters: the B, C, D, E, H, and L. For some operations, the
general purpose registers can be concatenated together
into sixteen bit register pairs. The user can switch back
and forth between the main and alternate register sets
using the exchange instructions, but only one set can be
active at any one time. One exchange instruction (EX)
allows the main accumulator and flags to be exchanged
with the alternate accumulator and flags. The other ex-
change (EXX) switches all of the general purpose
registers at once. This is helpful for a single context
switch, but makes it difficult to pass data between the
main and alternate register sets.

The Z80 has six special purpose registers: IX, 1Y, IP,
SP, R, and I. The IX and IY are sixteen bit index regis-
ters which can be added to a displacement to provide
indexed addressing. The instruction pointer (IP) and
stack pointer (SP) are also sixteen bit registers. The R
register is a seven bit counter used for dynamic RAM
refresh. The I register is a page register which contains
the upper eight address bits for a Mode 2 interrupt.

The Z80 supports one nonmaskable interrupt and has
three modes for maskable interrupts. In Mode 0, the
Z80 requires the interrupting device to place one instruc-
tion on the data bus. (This mode is identical to the way
the 8080 handles interrupts.) Mode 1 performs an
automatic restart to location 038H. In Mode 2, the in-
terrupting device places an eight bit address on the bus.
These eight bits are concatenated with the interrupt page
register to point to a location in a memory based table
of interrupt vectors.

The basic bus timing of the Z80 consists of an opcode
fetch (M1), a memory read (M2), and a memory write
(M3). During the M1 cycle, the CPU first fetches and
then decodes the instruction opcode. (Because the Z80
does not have a queue there is no overlap of opcode
fetch and execution.) The Z80 then outputs a memory
refresh address. If no wait states are used, Ml is four
clock cycles, while M2 and M3 are each three clock
cycles. The M1 zero wait state memory access times are
250 ns and 140 ns for the Z80A and Z80B. These times
can be increased by adding wait states. Each wait state
adds one clock per memory reference. This adds 250 ns
and 165 ns per bus cycle to the Z80A and Z80B to give
access times of 500 ns and 305 ns respectively.

The instruction set of the Z80 contains eight major
groups: Load and Exchange, Arithmetic, Logical,
Rotate and Shift, Bit Manipulation, I/0, CPU and pro-
gram control, and Block instructions. The processor
operates on bits, BCD digits, eight-bit bytes and sixteen-
bit words. The Block instructions will search or transfer
a block of memory using the DE and HL registers as
pointers and the BC register as a counter.

The Z80 provides seven addressing modes to access data
operands. It allows the use of eight or sixteen bit im-
mediate addresses, indexing using the IX or IY with an
eight bit displacement and register indirect addressing
using register pairs.

PERFORMANCE MEASUREMENTS

The processors were compared in four categories of per-
formance measurements. The first two categories
measure the execution speed of the iAPX 88/10 and the
Z80. The next comparison looks at the ease of use which
is the number of lines of code in each program. The last
basis for comparison is memory use or coding effi-
ciency.

The first performance measurement tests the processors
for maximum execution speed. This is important for
many applications where high throughput is a critical
factor. To measure this, the processors were run at max-
imum speed with no wait states. The maximum clock
rates are 5 MHz for the iAPX 88/10, 4 MHz for the
Z80A and 6 MHz for the Z80B. Table 2 gives the results
of this measurement for the iAPX 88/10 and the Z80A.
Table 3 gives the results for the iAPX 88/10 and the
Z80B.

The next measurement again examines execution speed,
but this time memory address access time was also con-
sidered. While the processors were again run at their
maximum clock rates, they were also required to be
compatible with slow memories. The Z80B has a
memory access time of 140 ns which often requires the
use of expensive speed selected memories. And there are
no EPROMs which could be used in this system without
wait states. Because of this, many Z80B systems will be
required to run with one, or even two wait states, pro-
viding memory access times of 305 ns and 470 ns. Many
systems using the Z80A also require one wait state
which increases the memory access time from 250 ns to
500 ns. The iAPX 88 has a zero wait state memory ac-
cess time of 460 ns. This is relaxed enough to allow the
use of ordinary nonspeed selected memories including
most EPROMs. Tables 4 and 5 compare the execution
speeds of the processors for systems which have the re-
quirement of a relaxed memory access time. The iAPX
88 is run with no wait states because of its 460 ns zero
wait state timing. The Z80A is measured with one wait
state providing a 500 ns memory access time. The Z80B
is measured for both the one and two wait state cases.
These measurements give relative performance for
relaxed memory access time.

AFN-01664A

APPENDIX

The next method of measuring performance was to
count the number of lines of code in each program.
These figures (in Table 6) demonstrate the power of the
instruction set and the ease with which the programmer
can implement the task using that processor. This has
been defined as ‘‘ease of use,”’ and is becoming increas-
ingly important. Both the cost of programmer time and
the amount of software in a typical application are
rapidly increasing. This means that a processor which
can accomplish more with fewer lines of code can
greatly reduce a product’s development time and cost.

Table 7 is titled ‘‘Bytes of Code.’’ It shows the number
of bytes of object code required to encode each pro-
gram. This coding efficiency is directly translatable into
system memory requirements, and therefore, into
system cost. Consequently, coding efficiency is very im-
portant in cost sensitive applications which have a large
amount of software such as a sophisticated operating
system Or many user programs.

Tables 2 through 7 contain the results of the four cate-
and numbers are given for each program along with the
Relative Performance which is the Z80 time or number
divided by the iAPX 88 time or number. For each Table
the Average Relative Performance was calculated by
adding the Relative Performance figures and dividing
by the number of programs (10). An ‘‘Adjusted
Average’’ Relative Performance was also calculated.
This average is calculated without using the highest and
lowest Relative Performance figures from that table.
This method makes sure that the average is not greatly
affected by one figure which may differ widely from the
others, such as the Computer Graphics Relative Execu-
tion ‘Time in Table 2.

PROGRAM DESCRIPTIONS

The ten benchmark programs were chosen to demon-
strate the capabilities of the iAPX 88/10 and the Z80 in
the areas of Data Manipulation, Computation, and
Processor Control. All iAPX 88 code has been as-
sembled and run.

1. Computer Graphics

The Computer Graphics program scales the X and Y
pairs that make up a graphics display. The 16-bit X and
Y pairs are offset by constant values (X0 and Y0), then
multiplied by a fractional scale factor to obtain the
scaled XY pairs. There are 16,384 pairs. This program
demonstrates computational capability.

2. 16-Bit Multiply

The 16-Bit Multiply program reads two 16-bit numbers
from memory, multiplies them and returns the 32-bit
product and the two multiplicands to memory. It
demonstrates computational capability.

3. Vector Add

The 16-Bit Vector Add performs an element-by-element
add of two twenty element vectors. Vector add demon-
strates computation and string processing capabilities.

4. Block Move

The Block Move program reads the block length,
source, and destination from memory. The block length
was chosen to be 126 bytes. The data is moved from the
source to the destination using repeated moves. Block
Move demonstrates manipulation of string data.

5. Block Translate

The Block Translate program translates a memory
block containing EBCDIC characters to ASCII and
stores the ASCII characters in another memory block.
The translation is done using an EBCDIC to ASCII
translation table, and the block length is 125 bytes. This
demonstrates string data manipulation and the use of a
lookup table.

6. Character Search

The Character Search program searches a table of
known length for a specific character. If that character
is found, its address is returned. If it is not found, zero
is returned. This program demonstrates data com-
parison and auto increment addressing.

7. Word Shift

The Word Shift program reads a 16-bit word from
memory, and shifts it N places to the right. (N is chosen
to be five.) Zeros rotate in on the left. The result is
stored in memory. This demonstrates manipulation of
16-bit data. '

8. Reentrant Call

The Reentrant Call program passes three parameters to
the called procedure. One is pushed from a general
register, the other two are pushed from memory. The
procedure is called, the state of the processor is pushed
onto the stack, and local storage is set up. The pro-
cedure body adds the three parameters and places the
result in local storage. The procedure is then exited and
the state of the processor is restored.

This program demonstrates the processors call and reen-
trant procedures and its ability to pass variables to a
called procedure. Support of these features is essential
for procedure oriented structured programming.

9. Bubble Sort

The Bubble Sort program sorts a one dimensional array
of sixteen bit integer elements into numerically ascend-
ing order using the exchange (bubble) sort algorithm.
This program was measured for a ten element array in
which the integers are initially in descending order. Bub-
ble Sort demonstrates indexed addressing and data
handling.

AFN-01664A

APPENDIX

10. Interrupt Response

This program accepts an interrupt, pushes all the proc-

essor registers (except the Stack Pointer) on to the stack,
and jumps to a service routine. All registers are restored
before returning from the service routine. This program
also considers the worst case latency due to finishing the
longest instruction. This is because when an interrupt
occurs it must wait to be processed until after the com-
pletion of the current instruction. The times are mea-
sured both with and without this latency. (For each
application where interrupt response is critical, the
designer should only consider the longest instruction his
system will use.)

RESULTS

The benchmark results are presented in Tables 2, 3, 4, 5,
6, and 7. These tables contain performance measure-
ments figures in terms of execution speed, ease of use,
and memory usage. For a description of these cate-
gories, see the Performance Measurements section.

Tables 2 and 3 show that the iAPX 88 executed nine of

the ten programs faster than the Z80A, and that the

iIAPX 88 was faster than the Z80B for eight of the ten
programs. The Computer Graphics program had the
largest performance difference. Here the iAPX 88 was

faster than the Z80A and Z80B by relative execution
time figures of 14.61 and 9.74. The major reason for
this difference is the sixteen bit divide instruction of the
iAPX 88. The sixteen bit multiply instruction of the
iAPX 88 also gave it a substantial performance advan-
tage in the Sixteen Bit Multiply benchmark. The Z80B
(but not the Z80A) was faster for the Block Translate
program where the alternate register set and the string
move instruction were used effectively. Both the Z80A
and Z80B were faster than the iAPX 88 for the Interrupt
Response benchmark. (The Z80 could have used the
alternate register set for even faster interrupt response,
but this would not allow multiple level interrupts.) The
two times given for each processor show its execution
time with and without latency due to finishing a
previous instruction. The relative execution time figures
for this program used the average of these numbers.
Here the Z80 gained a large advantage on instruction
latency time because it does not have the time consum-
ing (but powerful) sixteen bit divide and multiply in-
structions of the iAPX 88. The hardware interrupt
response time of the Z80 is also faster than that of the
iAPX 88.

The Average Relative Execution Times from Tables 2
and 3 show that iAPX 88 executed the programs faster
than the Z80A and Z80B by ratios of 3.78 to 1 and 2.52
to 1, respectively.

Table 2. Execution Times (iAPX 88 vs Z80A)

Absolute Time*

Relative Execution Time

Benchmark Programs iAPX 88/10 (5 MH2) Z80A (4 MH2) Z80A/IAPX 88
Computer Graphics 2.32 33.9 14.61
16-Bit Multiply 40.8 354.0 8.68
Vector Add 295.00 480.0 "~ 1.63
Block Move 328.00 661.0 2.02
Block Translate 1507.00 1980.0 1.31
Character Search 136.00 220.0 1.62
Word Shift 13.00 48.6 3.60
Bubble Sort 2406.00 4596.0 1.91
Reentrant Call 87.60 140.0 1.60
Interrupt Response** 107/61.5 75.5/69.7 0.86
Average Relative Execution Time*** 3.79
Adjusted Average Relative Execution TimeT 2.79

NOTES:

*The times are given in microseconds except for the Computer Graphics benchmark where the times are in seconds.

**The times given for the Interrupt Response benchmark show two times. The first the time includes the latency due to finishing the previous instruction. The second

time does not include this latency.

The Relative Execution Time and the averages use the average of these two times.

***The Average Relative Execution Time is the sum of the processor’s normalized times for all programs divided by the number of progl;ams (10).

TThe Adjusted Average Relative Execution Time is the average of the normalized times, excluding the highest and lowest normalized times. This prevents significant
- shifts in results due to anomalies for one particular benchmark and may be viewed as a better measure of expected relative performance.

AFN-01664A

APPENDIX

Table 3. Execution Times (iAPX 88 vs Z80B)

Absolute Time*

Relative Execution Time

Benchmark Programs iAPX 88/10 (5 MH2) Z80B (6 MH2) Z80B/iAPX 88
Computer:Graphics 232 22.6 9.74
16-Bit Multiply. 40.80 236.0 5.78
Vector Add © 295.00 320.0 1.08
Block Move 328.00 441.0 1.34
Block Translate 1507.00 1320.0 0.88
Character Search 136.00 . 146.0 1.07
Word Shift 13.00 311 2.39
Bubble Sort 2406.00 - 3064.0 1.27
Reentrant Call 87.60 93.3 1.07
Interrupt Response** 107/61.5 50.3/46.5 0.58
- Average Relative Execution Time*** - 2.52
1.86

Adjusted Average Relative Execution Timet

NOTES:

*The times are given in microseconds except for the Computer Graphics benchmark where the’times are in seconds.

**The times given for the Interrupt Response benchmark show two times. The first the time includes the latency due to finishing the previous instruction. The second

time does not include this latency.

The Relative Execution Timie and ‘the averages use the average of these two times.

***The Average Relative Execution Time is the sum of the processor’s normalized times for all programs divided by the number of programs (10).

tThe Adjusted Average Relative Execution Time is the average of the normalized times, e‘xcluding the highest and lowest normalized times.

Tables 4 and 5 give the results for execution time with
comparable memory access times. Here, the iAPX 88
was faster than the Z80A for all ten programs, and
faster than the Z80B for nine of the ten programs. As
explained in the Performance Measurements section,
the Z80A was run with one wait state, and the Z80B for

both the cases of one and two wait states. The Average
Relative Execution Times in Tables 4 and 5§ show that
the iAPX 88 was faster than the Z80A with one wait
_state (4.77 to_1), the Z80B with one wait state (3.20 to 1)
and the Z80B with two wait states (3.83 to 1).

Table 4. Execution Times with.Compardble Memory Access Times (iIAPX 88 vs Z80A)

Absolute Time* Relative Execution Time
Benchmark Programs iAPX 88/10 (5 MH2) Z80A (4 MH2) Z80/iIAPX 88
Computer Graphics 2.32 42.8 18.45
16-Bit Multiply 40.80 452.0 11.08
Vector Add 295.00 598.0 2.03
Block Move 328.00 829.0 2.53
Block Translate 1507.00 2514.0 1.67
Character Search 136.00 272.0 2.00
Word Shift 13.00 59.0 4.54
Bubble Sort 2406.00 5771.0 2.40
Reentrant Call 87.60 181.0 2.06
Interrupt Response** .107/61.5 95.7/88.5 0.90
Average Relative Execution Time*** 4.77
Adjusted Average Relative Execution Time*** 3.54
NOTES:
*Times for the Z80 include one wait state on memory access. The times are given in micr ds for the C Graphics b k where the times are in

seconds.
**See note 2 of Table 2.

***See Table 3, notes 3 and 4 for description of average calculations.

AFN-01664A

APPENDIX

Table 5. Execution Times with Comparable Memory Access Times (iAPX 88 vs Z80B)

Relative Execution Time
; e Absolute Time* Z80/iAPX 88

Benchmark Programs iAPX 88 (5 MHz2) Z80B** 280B*** Z280B** zZg8oB***
Computer Graphics 2.32 28.5 34.5 12.38 14.87
16-Bit Multiply 40.80 302.0 361.0 7.59 8.84
Vector Add 295.00 399.0 477.0 1.35 1.62
Block Move 328.00 552.0 659.0 1.68 2.01
Block Translate 1507.00 1676.0 2032.0 1.11 1.35
Character Search 136.00 "181.0 216.0 1.33 1.59
Word Shift 13.00 39.0 48.0 3.02 3.65
Bubble Sort 2406.00 3851.0 4638.0 1.60 1.93
Reentrant Call 87.60 120.0 147.0 1.38 1.69
Interrupt Response! 107/61.5 63.8/59.0 77.3/71.5 0.60 0.73
Average Relative Execution Time'T 3.20 3.83
Adjusted Average Relative Execution Time T 2.38 2.84

NOTES:

k where the times are in seconds.

*The times are given in microseconds except for the C Graphics t
**These times for the 6 MHz Z80B include one wait state on memory accesses.
***These times for the 6 MHz Z80B include two wait states on memory accesses.

TSee note 2 of Table 2.

1t1See Table 3, notes 3 and 4 for description of average calculations.

Table 6 is titled ‘“Ease of Use’’ and gives the number of
lines of code required for each program. The Average
Relative Program Length of 2.51 shows that the Z80 re-
quired more than twice as many lines of code as the
iAPX 88 to accomplish the same tasks. The sixteen bit
multiply and divide instructions of the iAPX 88 were the
major factors in the 4.73 and 5.00 Relative Program
Length figures for the Computer Graphics and Sixteen
bit Multiply benchmarks. Some other factors which
helped the iAPX 88 in this category are its flexible ad-

dressing modes, string instructions and its ease of
handling sixteen bit data. The Z80 used fewer lines of
code for the Block Move and the Character Search
benchmarks. The iAPX 88 Block Move uses word
moves. A byte move algorithm could have been used,
but with a slight performance degradation (although
still faster than the Z80). The program would then have
the same number of lines (and bytes) of code used by the
Z380 Block Move.

Table 6. Ease of Pfogramming (iIAPX 88 vs Z80)

Lines of Code Relative Program Length
Benchmark Program iAPX 88/10 280 Z80/iAPX 88
Computer Graphics ‘ 15 71 4.73
16-Bit Multiply - 20 5.00
Vector Add 8 20 2.50
Block Move 7 4 0.57
Block Translate 10 13 1.30
Character Search . 8 6 0.75
Word Shift 2 10 5.00
Bubble Sort ‘ 17 30 1.76
Reentrant Call 26 47 1.81
Interrupt Response 15 25 1.67
Average Relative Program Length* 2.51
Adjusted Average Relative Program Length* 2.44

NOTE:

*See Table 3, notes 3 and 4 for description of average calculations.

AFN-01664A

APPENDIX

Table 7 gives the bytes of object code used to encode the
benchmark programs. The Average Relative Code Size
number of 1.97 says that the Z80 used nearly twice as
much memory to store its programs as the iAPX 88.

Table 7. Memory Utilization (Bytes) (iAPX 88 vs Z80)

Even though the majority of the Z80 opcodes are
shorter than iAPX 88 opcodes, the Z80 requires more
memory mostly because the iAPX 88 used fewer lines of
code as shown in Table 6.

Bytes of Code Relative Code Size
Benchmark Programs iAPX 88/10 Z80 Z80/iAPX 88
Computer Graphics 40 151 3.78
16-Bit Multiply 14 41 2.93
Vector Add 18 30 1.67
Block Move 15 11 0.73
Block Translate 24 26 1.08
Character Search 18 15 0.83
Word Shift 6 21 3.50
Bubble Sort 38 62 1.63
Reentrant Call 48 83 1.73
Interrupt Response 15 28 1.87
Average Relative Code Size* 1.97
Adjusted Average Relative Code Size* 1.91
NOTE:
*See Table 3, notes 3 and 4 for description of average calculations.
1.0 — 30
J|
251
s 2.5 |
5
5 7 L . 1.97
S .| |3 g |
e8 5| | & s
NT £ . S 1.0 1.0
2 o | 5 = =
= H ‘é = 0.26
S H .- 8 0.21 x e 2
’ H S 53 s5E | |50 55%
PROGRAM LENGTH CoDE siZE

PROCESSOR

Graph |I. Normalized Average Throughput

Graph Il. Normalized Average: Program Length and

Code Size

AFN-01664A

APPENDIX

CONCLUSION

The results of this benchmark study show that the iIAPX
88/10 significantly outperformed both the Z80A and
Z80B for the benchmark programs used. Table 8 shows
that the iAPX 88 is faster than both the Z80A and the
Z80B, and that the iAPX 88 uses fewer lines of code,
less memory and cheaper memory than the Z80.

The iAPX 88 did particularly well in the programs
which were word oriented. It was also efficient to pro-
gram due to the powerful instruction set and flexible ad-
dressing modes. Both processors do have useful string
instructions and a loop instruction with an automatic
counter. The Z80 has faster interrupt response, but was
slower and less efficient than the iAPX 88 for nearly all
other benchmarks.

In view of these results, it appears that the iAPX 88 is a
better choice for applications where high throughput,
low development cost and low memory cost are impor-
tant considerations.

Table 8. Performance Breakdown

Performance Ratio of
Performance Category iAPX 88 to Z80

Execution Speed (Z80A)
Execution Speed (Z80B)
Execution Speed (Z80A)*
Execution Speed (Z80B)**
Execution Speed (Z80B)***
Ease of Programming

Coding Efficiency

iAPX 88/10 is 3.79X faster
iAPX 88/10 is 2.52X faster
iAPX 88/10 is 4.77X faster
iAPX 88/10 is 3.20X faster
iAPX 88/10 is 3.83X faster
iAPX 88/10 is 2.51X more
efficient
iAPX 88/10 is 1.97X more
efficient

NOTES:

*IAPX 88 vs Z80A with comparable memory (Z80A with 1 wait state).

**APX 88 vs Z80B with comparable memory (Z80B with 1 wait state).
***/APX 88 vs Z80B with comparable memory (Z80B with 2 wait states).

AFN-01664A

APPENDIX

APPENDIX

BENCHMARK PROGRAM CODE AND FLOWCHARTS

READ M1

!

READ M2

v

P2:P1=M1x M2

!

STORE P1

!

STORE P2

!

Figure 1. 16-Bit Multiply Flowchart

1 AFN-01664A

APPENDIX

BENCHMARK: 16-Bit Multiply
PROCESSOR: Intel iAPX 88
Bytes Cycles

3 18 MOv

4 137 MUL

3 19 MOV

4 19 MOv

;REGISTER USAGE:
;s AX-
DX- ACCUMULATOR

9

AX, M1
M2

P1,AX
Pz,DX

14 bytes of code
4 lines of code

ACCUMULATOR

12

;Read operand
;A*B

;Store LSB
;Store MSB

AFN-01664A

APPENDIX

BENCHMARK: 16-Bit Multiply

PROCESSOR: 280

Bytes

Cycles
20 LD
20 LD
7 LD
10 LD
11 LP: ADD
4 EX
7/1¢ ' JR
11 : ADD
10 JP
11 MP1: ADD
6 INC
4 MP2: EX
7/12 JR
11 ADD
7/12 JR
6 INC
4 MP3: DEC
10 JP
20 LD
16 LD

;Register usage

A - Count

DE. - Multiplier, Product MSB
BC - Multiplicand

HL - Product LSB

ws we we we

DE, (M1) ;Load multiplier

BC,(M2) ;Load multiplicand

A,16 . 3;Load count

HL,O ;Clear HL :

HL,HL .~ ;Shift product LSB left

HL,DE. ;Exchange MSB with LSB

C,MP1 ;dump if carry from LSB

HL,HL ;No carry. Shift multiplier left.
MP2

HL,HL . sCarry. Shift multiplier left.
HL - ;Increment multiplier

HL,DE ;

NC,MP3 ;dump if no carry from multiplier
HL,BC ;Add ‘multiplicand to product LSB
NC,MP3 ;dump if no carry

DE “;Increment MSB due to Add carry

A ;Decrement count

NZ,LP ;Loop if not zero

(PRMSB),DE ;Store product

(PRLSB) HL

41 bytes of code
20 lines of code

13 AFN-01664A

APPENDIX

INITIALIZE
TRANSLATE, EBCDIC
AND ASCII-TABLE
POINTERS

'

INITIALIZE COUNT

!

READ EBCDIC

NO '

CHARACTER

!

TRANSLATE TO
SCil

{

STORE IN
ASCIl BUFFER

UPDATE POINTERS
AND COUNTER

Figure 2. Block Translate Flowchart

14

AFN-01664A

APPENDIX

BENCHMARK:
PROCESSOR: Intel
Bytes Cycles

4 8

4 8

4 8

4 18

¥ -2

1 16 NEXT:-

1 15,

1 15

2 3

Z

19/5

Block Translate

iAPX 88

;5 REGISTER USAGE

LEA
LEA
LEA

AL
BX
CX
SI
DI

MOV
cLD

LOD

< XLA

STO

S
T‘
S

CMP

LOOPNE

- ACCUMULATOR

- TRANSLATE TABLE POINTER
- COUNT

- EBCBUF ' POINTER"

- ASCIBUF POINTER

BX, TABLE ;Initialize Table Pointer
SI, EBCBUF ;Initialize EBCDIC Pointer
DI, ASCIBUF sInitialize ASCII Pointer
CX, COUNT ;Initialize COUNT

: . ;Clear direction flag
EBCBUF ;Read EBCDIC character
TABLE ;Translate to ASCII
ASCIBUF ;Store translated byte
AL, EOL ;Compare with terminator
NEXT ;Loop unless AL=EOL or CX =0

24:bytes of code
- 10 1Tines of code

15 AFN-01664A

APPENDIX

BENCHMARK :

PROCESSOR:

Bytes

WWW—Ww

WN et et N N

Block Translate

780

Cycles

10

4
10
10
10

OO0 —-hubud

—

LP:

;Register usage

We we Ve we we we

. LD

EXX
LD
LD-

A
BC,
DE
DE'
HL
SP

LD

. EXX

LDD
EXX
LD
LD
ADD
LDI
JP

Accumulator

Count

ASCII Buffer

EBCDIC Buffer
Accumulator

Translate table pointer

DE',EBCBUF ;Load EBCDIC pointer
, ;Store pointer in DE'
BC, COUNT sCOUNT = 125
DE, ASCIBUF sLoad, ASCII pointer
SP, XTBL ;Load: - translate table pointer
;Restore EBCDIC pointer
A,(DE") ;Load EBCDIC character
;Restore pointers
H,O ;Clear H
L,A - ;Load character into A
HL,SP ;Address of ASCII character
(DE), (HL) - - 3Move ASCII character
PO,LD .3dump if not done

26 bytes of code
13 lines of code

16 AFN-01664A

APPENDIX

FLAG=TRUE

FLAG =% NO

FLAG = FALSE
KNT =COUNT -1
=0

ARRAY() >
ARRAY (I +1)?

EXCHANGE ARRAY (1)
AND ARRAY (1 +1)

!

FLAG = TRUE

I=1+1
KNT=KNT -1

NO

YES

Figure 3. Bubble Sort

17

AFN-01664A

APPENDIX

BENCHMARK::

PROCESSOR: iAPX 88

Bytes

N WwN WwWw

NN — —

;RE

b

e we we we

MOV

CMP
JNE
XOR
MOV
DEC
XOR

MOv
CMP
JLE
XCH
MOv
MOV

INC
INC
LOO
JMP

Bubble Sort

GISTER USAGE:

AX
BL
CX
DX
SI

G

P

ACCUMULATOR

EXCHANGE FLAG (OFF=TRUE, 0= FALSE)

COUNT OF ELEMENTS
ACCUMULATOR
INDEX OF ARRAY

BL,OFFH

BL,OFFH
A4

BL,BL
CX,COUNT
CX

SI,SI

AX,ARRAY[SI]
AX,ARRAY[SI+2]
A3
ARRAY[SI+27,AX
ARRAY[SI],AX
BL,OFFH

SI
SI
A2
Al

38 bytes of code
17 lines of code

18

sEXCHANGE=TRUE
sEXCHANGE=TRUE ?
; NO, FINISHED
sEXCHANGE=FALSE
;CX=COUNT=1
;S1,=0

sARRAY (1)

;5 ARRAY(I+1) ?
;NO

sEXCHANGE ELEMENTS
;EXCHANGE=TRUE
;SI=SI+2

;DEC CX & LOOP IF CX=0

AFN-01664A

APPENDIX

BENCHMARK: Bubble
PROCESSOR: 780

Bytes

wH N

Cycles
8

14

10

8 LI:
7/1¢

8

10

4 Lz2:

—_— e —— N —

ON—00O N PhODOOOVWON—PDPD

NOEX:

—_— N -

DONE:

Sort

;REGISTER USAGE:

BC
DE
HL
HL
IX
DE

s we ve we we W

EXX

ACCUMULATOR
ACCUMULATOR

COUNT

ACCUMULATOR

ARRAY POINTER
TEMPORARY STORAGE

FLAG, A
IX,PTR
DE, 1

FLAG,A
Z,DONE
FLAG,A
HL,COUNT-1

M~~~ Z T OoOMmMmMIMrmmoO

62 bytes of code
30 lines of code

19

;Set FLAG bit
;Load pointer to array
;Load decrement constant

;Test FLAG

;Done if zero

sReset FLAG

;Load COUNT -

;Load data (I)
;Load data (I+1)
;Save date in DE
;Clear carry flag
;Compare data

;No ex if data(I) data(I+1)
sExchange

;Set exchange flag
sIncrement Pointer
;Clear carry flag
;Decrement COUNT

;dump if COUNT not zero
s;Another pass

AFN-01664A

APPENDIX

Benchmark Report:
Intel® iAPX 88 vs
Motorola MC6809

MC6809 is a registered trademark of Motorola Corporation.

20

Contents

INTRODUCTIONottt 21

PROCESSORDESCRIPTION.................... 21
iAPX 88 Descriptionol 22
MC6809 Descriptionoovviiiiiiinan. 22
Table 1. Architectural Features 21

BENCHMARK PROGRAM DESCRIPTIONS 23

RESULTS e 24
Table 2. Execution Times e 24
Table 3. Execution Times with “Equal”

Memory AccessTimescvvvunnn.. 25
Table 4. Memory Utilization................... 25
Table 5. Ease of Programming................ 26
Graph |. Normalized Average Throughput....... 26
Graph Il. Normalized Average Memory Use

and LinesofCode 26
CONCLUSIONttt 27
Table 6. Performance Breakdown.............. 27

APPENDIX |. BENCHMARK PROGRAM CODE

AND FLOWCHARTS* 28
Figure 1. 16-Bit Multiply Flowchart 28
Figure 2. Block Move Flowchart............... 31
Figure 3. Character Search Flowchart.......... 34

*Includes code and flowcharts from three benchmark programs. For the
code and flowcharts for all benchmark programs contact your local
Intel sales office.

'Multibus is a trademark of Intel Corporation.

AFN 01532A

APPENDIX

INTRODUCTION

This benchmark report compares the capabilities of
Intel’s iAPX 88/10 microprocessor with those of the
Motorola MC6809. The purpose of the report is to aid
the user in his evaluation of the two processors, and to
provide him with some of the information he will need
in making a knowledgeable decision regarding which
processor best satisfies the requirements of his applica-
tion.

Because the requirements can vary so greatly from one
system to the next, no one program can adequately
display the capabilities of each processor. For this
reason, ten programs have been chosen to demonstrate
the performance of the iAPX 88/10 and MC6809 in
several areas. The benchmark programs cover some of
the basic tasks which are relevant to many of the ap-
plications for which these two processors might be con-
sidered. These ten programs demonstrate the proces-
sors’ capabilities in the areas of data manipulation,
computation, and processor control. Each program was
defined in such a way as to be relatively straight-
forward, while still allowing the processors to use their
instruction set efficiently in implementing the program.

The benchmark programs were used to evaluate the
iAPX 88/10 and MC6809 on the basis of execution
speed, memory usage, and ease of programming (num-
ber of lines of code). These factors were considered
because they are often the key requirements evaluated
when a design decision is made. Execution speed is a
direct measure of how fast a processor will complete a
task. This can be the critical requirement for many real-
time control or multi-user systems. Here, cost may not
be the primary issue because a less expensive but slower
system may be inadequate, regardless of the cost sav-
ings. On the other hand, many systems do have critical
cost requirements for which it may make sense to sacri-
fice some execution speed in order to reduce costs. For a
memory intensive system, the cost can be reduced signi-
ficantly by using less memory, or cheaper, lower speed
memory. For this reason, coding efficiency and memory
access time were examined to help evaluate price/
performance tradeoffs. Another factor, the ease of pro-
gramming, is becoming more and more important as the
cost of memory decreases and the size of the typical
microcomputer application rapidly grows. For many
applications, software development costs have become
greater than hardware development costs. This means
that the total development costs of such a project can be
substantially reduced by using the processor which ac-
complishes the most in the least number of lines of code.
To demonstrate performance in this area, the processors
have also been evaluated on the basis of the number of
lines of code required for each program which has been
defined as ‘‘ease of programming.”’

The benchmark programs in this report were written for
the purpose of comparing the iAPX 88/10 and MC6809
microprocessors. They should be used only as a guide in

evaluating processor performance and are not an ab-
solute measure of performance for all applications. The
programs were written to perform the tasks in a clear
and straightforward manner. They do not necessarily
show an optimized implementation of the task. The
benchmark programs do, however, provide relevant in-
formation and a consistent comparison which may be
useful to the designer in choosing the microprocessor
which delivers the best solution to the requirements of
his design.

PROCESSOR DESCRIPTION

A brief description of some of the key features of the
iAPX 88 and MC6809 is included here and in Table 1.

Table 1. Architectural Features

Feature iAPX 88/10 [MC6809
Memory Addressability 1 megabyte | 64K bytes
General Registers
Number 8 or 8+4* 2 or 1**
Size (bits) 16 or 8,16* | 8 or 16**
Instruction Sizes (bytes) 1,2,3,4,5,6 1,2,3,4,5
Operand Addressing Modes
Register Yes Yes
Immediate Yes Yes
Direct Address Yes Yes
Register Indirect Yes Yes
Indexed or Based Yes Yes
Base + Indexed ' Yes No
Base + Displacement Yes No
Index + Displacement Yes Yes
Base + Indexed + Displacement Yes No
Indexed Indirect No Yes
Auto Increment/Decrement Yes Yes
Data Types
BCD Digits Yes Yes
ASCII Digits Yes No
Bytes Yes Yes
Words Yes Yes
Unsigned Integers Yes Yes
Signed Integers Yes Yes
General Double Operand
Operations
Reg with Reg to Reg Yes No
Reg with Mem to Reg Yes Yes
Reg with Mem to Mem Yes No
Reg with Imed to Reg Yes Yes
Mem with Imed to Mem Yes No
Mem with Mem to Mem Yes No
Interrupts
NMI Yes Yes
Software Interrupts (#) Yes (256) Yes (3)
Fast External Interrupts (#) No Yes (1)
Multi-Vectored Interrupts (#) Yes (256) No

*The AX, BX, CX and DX registers can be used as four 16-bit registers, or as
eight 8-bit registers. With the index and pointer registers, this gives eight 16-bit
registers, or eight 8-bit and four 16-bit registers.

**The A and B registers can be used as two 8-bit registers or as one 16-bit
register.

AFN 01532A

APPENDIX

The topics discussed are Architecture, Memory Timing,
Instruction Sets, and Addressing Modes. For more com-
plete descriptions, refer to Intel’s 8086 Family Users’
Manual and Motorola’s MC6809 Preliminary Program-
ming Manual or other related literature.

iAPX 88

The Intel 8088 (or 88/10) is the host processor of the
iAPX 88 microcomputer system. The 88/10 is an
N-channel MOS microprocessor which currently has a
maximum clock rate of 5 MHz. Internally the 88/10is a
microcoded 16-bit processor which multiplexes a 16-bit
internal data bus onto an 8-bit system data bus for ex-
ternal communication. The address space is one mega-
byte which is segmented to support modular programm-
ing. Except for the implementation of the Bus Interface
Unit the 88/10 is identical to the Intel 86/10
microprocessor.

The architecture of the 88/10 is divided into two
separate processing units, the Bus Interface Unit (BIU)
and the Execution Unit (EU). These two units perform
separate functions in parallel to maximize throughput.

The EU contains the 16-bit arithmetic/logic unit (ALU)
as well as the general registers and flags of the CPU. It is
responsible for executing instructions, and communi-
cates only with the BIU. The BIU performs all bus
operations needed by the EU. It contains the segment
registers, the instruction pointer, the bus control logic
and the instruction queue. Because the BIU operates in
parallel with the EU, instruction fetches overlap instruc-
tion execution. The result is efficient utilization of the
system bus and transparent instruction prefetch.

The 88/10 contains three sets of four 16-bit registers,
and nine one-bit flags. The four data group registers,
AX, BX, CX and DX, as well as the four pointer and in-
dex registers, SP, BP, SI and DI, are all 16-bits wide and
can be used as source and destination in most arithmetic
and logic operations. All eight of these general registers
function as accumulators for many instructions. The
data group registers, AX, BX, CX and DX can also be
used as eight 8-bit accumulators for byte operations.
The pointer and index registers also serve as address
registers in addition to their general register functions.
The SI and DI registers function as the source and
destination pointers for the string operations. The Stack
Pointer register (SP) is used in stack operations, and the
BP register is a base pointer for stack relative Based Ad-
dressing modes frequently used in high level language
programming. The four 16-bit segment registers, CS,
DS, SS and ES, provide memory segmentation expand-
ing the address space to one megabyte.

The iAPX 88 uses a four-clock basic bus cycle. The nor-
mal memory access time is 460 nsec. To use memories
slower than this, wait states of 200 nsec can be added.
Using one wait state produces a memory access time of
660 nsec.

22

The iAPX 88/10 instruction set operates on bits, BCD
digits, ASCII digits, 8-bit bytes, 16-bit words, and
signed or unsigned integers. Many of the two operand
instructions allow both operands to reside in registers,
or one in a register and one in memory. The.order of the
operands is interchangeable, and the location of either
source operand may serve as the destination for the
result. The arithmetic instructions include 8- or 16-bit
Add, Subtract, Multiply, Divide and Compare of signed
or unsigned integer values. The iAPX 88 instructions
are identical to those of the iIAPX 86 providing complete
software compatibility.

Twenty-four addressing modes are available to directly
or indirectly access data and operands. These modes
allow from one to four component addressing using
combinations of segment, base, and index registers,
and/or 8- or 16-bit displacements. The string instruc-
tions provide auto increment and auto decrement ad-
dressing, memory to memory operations, and have an
optional repeat prefix.

The iAPX 88 in the minimum mode supports the hold/
hold acknowledge protocol to enable bus control to be
transferred to another bus master such as a DMA con-
troller. It can also be configured in the maximum mode
with two request/grant lines, each of which can support
multiple bus masters for coprocessor designs using the
8087 Numeric Data Processor and/or the 8089 1/0
Processor (IAPX 88/20, iAPX 88/21, iAPX 88/11).
Even though not considered on these benchmarks, the
8087 (1IAPX 88/20) uniquely enhances the iAPX 88/10
(86/10) capabilities with 68 additional instructions, in-
cluding 64-bit floating point and transcendental func-
tions, eight 80-bit stack oriented registers and seven ad-
ditional numeric data types.

The iAPX 88 provides nonmaskable software (internal)
interrupts and maskable or nonmaskable hardware (ex-
ternal) interrupts. The interrupt structure supports up to
256 different interrupt types using an interrupt vector
table located in memory. For more information regard-
ing interrupts see your local Intel office.

MC6809

The Motorola MC6809 is an N-channel random logic
MOS microprocessor which is available at 1.0 MHz, 1.5
MHz or 2.0 MHz clock rates. The MC6809 can address
up to 64 kbytes of memory. The A and B registers are
two 8-bit accumulators which may be concatenated into
a single 16-bit accumulator, the D register. There are
four pointer registers: X, Y, U and S. All are 16-bits
wide and function primarily as base registers for
memory addressing. The U and S registers are also used
for manipulating the hardware and user stacks. The
16-bit program counter (PC) points to the address of the
next instruction, and can also be operated on for control
transfer. The 8-bit Direct Page Register (DPR) is used to
contain the upper eight address bits for some addressing

AFN 01532A

APPENDIX

modes. The processor flags are contained in the 8-bit
condition Code Register (CCR).

The basic bus cycle of the MC6809 is a single, 500 nsec
clock cycle for the 2.0 MHz version. The normal
memory access time is 320 nsec. To accommodate
slower memories, 125 nsec wait states can be added. Ad-
ding one wait state extends the memory access time to
445 nsec.

Although the instruction set of the MC6809 operates
predominantly on 8-bit data, there are a few bit opera-
tions, two BCD adjusts, and eight instructions with
16-bit operands. Most two operand instructions require
one operand to be in a register, and the other operand to
reside in memory, with the result going to the register.
Two operand instructions such as Add or Compare can-
not be done from register to register. The exceptions to
this are the Multiply, Transfer Exchange, and Sign Ex-
tend instructions, for which both source operands and
the destination operand must be in registers. The arith-
metic instructions include 8-bit unsigned integer Multip-
ly and 8- or 16-bit Add, Subtract and Compare. Other
16-bit instructions include Load, Store, Exchange,
Transfer, and Sign Extend.)

For stack manipulation, a single Push or Pull instruc-
tion allows any combination of registers to be placed on
or removed from either of the two stacks. There are also
19 branch instructions, in long (16-bit offset) or short
(8-bit offset) forms.

The MC6809 supports 13 different addressing modes.
Included in these modes are 5 forms of indexed address-
ing, including indexed Auto Increment and Auto Decre-
ment modes which are useful for string operations.
Relative addressing for Branch instructions use one- or
two-byte offsets as a pointer to a data location.

The MC6809 provides maskable and nonmaskable
hardware interrupts, as well as three software inter-
rupts. There are two maskable hardware interrupts,
FIRQ and IRQ. The FIRQ (Fast Interrupt Request)
pushes only the Condition Code and Program Counter
registers. The IRQ automatically pushes all of the
MC6809 registers (except the SP) onto the stack. Each
MC6809 interrupt has a fixed vector address, fetching
its service routine address from a predefined memory
location. For more information regarding hardware and
software interrupts see your local Intel office.

PROGRAM DESCRIPTIONS

The ten benchmark programs were chosen to demon-
strate the capabilities of the iAPX 88/10 and the
MC6809 in the areas of data manipulation, computa-
tion, and processor control. The basic algorithms for
several of the programs (Block Move, Character Search,
Word Shift, Vector Add, and 16-Bit Multiply) are
similar to the algorithms of benchmark programs in
Motorola’s MC6809 Preliminary Programming
Manual. All iAPX 88 code has been assembled and run.

23

1. Computer Graphics

The Computer Graphics program scales the X and Y
pairs that make up a graphics display. The 16-bit X and
Y pairs are offset by constant values (X0 and YO0), then
multiplied by a fractional scale factor to obtain the
scaled XY pairs. There are 16,384 pairs. This program
demonstrates 16-bit computational capability.

2. 16-Bit Multiply

The 16-Bit Multiply program reads two 16-bit numbers
from memory, multiplies them and returns the 32-bit
product and the two multiplicands to memory. Multiply
demonstrates 16-bit computational capability.

3. Vector Add

The 16-Bit Vector Add performs an element-by-element
add of two twenty-element vectors. Vector add demon-
strates 16-bit computation and string processing capa-
bilities.

4. Block Move

The Block Move program reads the block length,
source, and destination from memory. The block length
was chosen to be 126 bytes. The data is moved from the
source to the destination using word moves. Block
Move demonstrates data manipulation and auto incre-
ment addressing.

5. Block Translate

The Block Translate program translates a memory
block containing EBCDIC characters to ASCII and
stores the ASCII characters in another memory block.
The translation is done using an EBCDIC to ASCII
translation table, and the block length is 125 bytes. This
demonstrates data manipulation, auto increment ad-
dressing, and the use of a lookup table.

6. Character Search

The Character Search program searches a table of
known length for a specific character. If that character
is found, its address is returned. If it is not found, zero
is returned. This program demonstrates data com-
parison and auto increment addressing.

7. Word Shift

The Word Shift program reads a 16-bit word from
memory, and shifts it N places to the right. (N is chosen
to be five.) Zeros rotate in on the left. The result is
stored in memory. This demonstrates manipulation of
16-bit data.

8. Reentrant Call

The Reentrant Call program passes three parameters to
the called procedure. One is pushed from a general
register, the other two are pushed from memory. The
procedure is called, the state of the processor is pushed
onto the stack, and local storage is set up. The pro-
cedure body adds the three parameters and places the
result in local storage. The procedure is then exited and
the state of the processor is restored.

AFN 01532A

APPENDIX

This program demonstrates the processor’s call and re-
entrant procedures and its ability to pass variables to a
called procedure. Support of these features is essential
for structured programming.

9. Interrupt Response

I. Single-Vectored Interrupt g
The Single-Vectored Interrupt pushes all the processor
registers (except the Stack Pointer) onto the stack, and
jumps to a service routine. All registers are restored
before returning. The time also includes the length of
time the processor requires to execute the longest
instruction before recognizing the interrupt.

II. Multi-Vectored Interrupt

The Multi-Vectored Interrupt stacks only the Instruc-
tion Pointer/Program Counter and Flags/Condition
Code registers. The processor must determine which of
eight possible devices initiated the interrupt request, and
jump to the corresponding service routine. The return
time is also included.

RESULTS

The results of this study are presented in terms of execu-
tion speed, memory usage, and ease of programming.
To be relevant to applications where speed is the crucial
factor, the processors are first compared at their highest
performance, with no wait states. Then for the cases
where memory cost is an issue, comparisons are made
for execution speed with (nearly) equal memory access
times, and for coding efficiency. The processors are also
compared on the ease of programming (number of lines
of code) which can be an important factor in the
development costs of a project.

The zero wait state execution speed of the iAPX 88/10 is
compared to that of the MC6809 in Table 2. For each
program, the execution time is given in terms of Ab-

solute Time and Normalized Time for each processor.
The Normalized Time is the Absolute Time required by
the processor for that benchmark divided by the Ab-
solute Time of the iAPX 88/10 for that benchmark. The
Average Normalized Time was computed by adding the
Normalized Times and dividing by the total number of
benchmarks (10). The Adjusted Average Normalized
Time is calculated in the same manner as the Average
Normalized Time, except that the highest and the lowest
numbers were eliminated from this average. This was
done because the Average Normalized Time was greatly
affected by the Computer Graphics benchmark. This
method is used when computing averages for other
categories as well.

The execution speed comparison made in Table 2 shows
that the iAPX 88/10 performed faster for eight of the
ten benchmarks. The MC6809’s Average Normalized
Time of 3.65 says that it required 265% more time than
the iAPX 88/10. The Adjusted Average Normalized
Time (1.86), which eliminated the Computer Graphics
and Single-Vectored Interrupt benchmarks, shows that
the MC6809 is 86% slower, or requires 86% more time,
than the iAPX 88/10 to complete these benchmarks.

For applications where the cost of memory is a critical
factor, both the speed of memory, and the amount of
memory must be considered. By speed of memory, we
are referring to the memory access time, which is a ma-
jor factor in the price of memory. Because the memory
access time of the iAPX 88 is 460 nsec with no wait
states, one wait state is added to the MC6809. This gives
a 445 nsec memory access time, which is still less than
the 460 nsec zero wait state time of the iIAPX 88. A com-
parison of the execution speeds of the two processors
for this case is made in Table 3 (Execution Times With
‘“Equal’’ Memory Access Times), showing that the
iAPX 88/10 was again faster than the MC6809 for eight

Table 2. Execution Times (5 MHz 88/10 vs 2 MHz 6809)

Absolute Time Normalized Time

Benchmark Programs iAPX 88/10 MC6809 iAPX 88/10 MC6809
Computer Graphics 2.32 sec 49.7 sec. 1 21.42
16-Bit Multiply 40.8 us 82.0 us 1 2.01
Vector Add 295.0 us 325.0 us 1 1.10
Block Move 328.0 us 674.0 us 1 2.05
Block Translate 1507.0 wus 2687.0 us 1 1.78
Character Search 136.0 us 284.0 us 1 2.09
Word Shift 13.0 us 44.5 us 1 3.42
Reentrant Call 87.6 us 76.5 us 1 0.87
Single-Vectored Interrupt 102.6 us 25.5 us 1 0.27
Multi-Vectored Interrupt 24.6 us 45.5 us 1 1.85

Average Normalized Execution Time* 1 3.69

Adjusted Average Normalized Execution Time** 1 1.90

*The Average Normalized Time is the sum of the processor’s normalized times for all programs divided by the number of programs (10).

**The Adjusted Average Normalized Execution Time is the average of the normalized times, excluding the highest and lowest normalized times.

24 AFN 01532A

APPENDIX

Table 3. Execution Times with “Equal”’ Memory Access Times (5 MHz 88/10 vs 2 MHz 6809)

Absolute Time

Normalized Time

Benchmark Program iAPX 88/10 MC6809* iAPX 88/10 MC6809
Computer Graphics 2.32 sec. - 57.1 sec. 1 24.61
16-Bit Multiply 40.8 us 91.9 us 1 2.25
Vector Add 295.0 "us 369.0 us 1 1.25
Block Move 328.0 us 763.0 us 1 2.33
Block Translate 1507.0 wus 3016.0 us 1 2.00
Character Search 136.0 us 324.0 us 1 2.38
Word Shift 14.4 us 49.1 us 1 3.78
Reentrant Call 87.6 us 84.1 us 1 0.96
Single-Vectored Interrupt 102.6 us 30.1 us i 0.29
Multi-Vectored Interrupt 24.6 us 553 us 1 2.25

Average Normalized Execution Time** 1 4.21
Adjusted Average Normalized Execution Time** 1 2.15

*Times for the MC6809 include one wait state on memory accesses.
**See note, Table 2, for description of average calculations.

of the ten programs. The MC6809’s Average Normal-
ized Time of 4.17 greatly reflects (as it did in Table 2)
the fact that the iAPX 88/10 outperformed the MC6809
by a large margin (more than 24 to 1) in the Computer
Graphics benchmark. The Adjusted Average Normal-
ized Time of 2.10 indicates that, after eliminating the
Computer Graphics and Single-Vectored Interrupt, the
iAPX 88/10 was more than twice as fast as the MC6809.

Table 4 compares the performance of the iAPX 88 and
the MC6809 in terms of memory use, or coding efficien-

cy. The results in this table show that the iAPX 88 used "

less code for nine of the ten programs. The two pro-

grams in which the largest performance differences oc-
curred were the interrupt response benchmarks. The
MC6809 won on the Single-Vectored Interrupt, largely
due to the use of its IRQ interrupt which automatically
stacks all the MC6809’s registers. The iAPX 88/10 per-
formed better for the Multi-Vectored Interrupt because
its interrupt response requires no extra code to accom-
modate multiple interrupt vectors. For the other pro-
grams, the iAPX 88 provides significant advantages due
to its string instructions and its efficient handling of
16-bit quantities. The Adjusted Average Normalized
Number of Bytes shows the iAPX 88 with better than a
2 to 1 advantage over the MC6809 in coding efficiency.

Table 4. Memory Utilization (Bytes)

Bytes of Code

Normalized Bytes

Benchmark Program iAPX 88/10 MC6809 iAPX 88/10 MC6809
Computer Graphics 40 180 1 4.50
16-Bit Multiply 14 56 1 4.00
Vector Add 18 21 1 1.17
Block Move 15 26 1 1.73
Block Translate 24 37 1 1.54
Character Search 18 19 1 1.06
Word Shift 6 18 1 3.00
Reentrant Call 48 49 1 1.02
Single-Vectored Interrupt 15 1 1 0.07
Multi-Vectored Interrupt 1 15 1 15.00

Average Normalized Number of Bytes of Code* 1 3.31
Adjusted Average Normalized Number of Bytes of Code* 1 2.25

*See note, Table 2, for description of average calculations.

25

AFN 01532A

APPENDIX

In Table 5 the iAPX 88 and the MC6809 are compared
for ‘‘Ease of Programming’’ by counting the number of
lines of code required for each benchmark. The iAPX
88 used a smaller number of lines of code than the
MC6809 for eight of the ten programs. As in coding ef-
ficiency, the greatest differences occurred in the two in-
terrupt response benchmarks, with the MC6809 again
having an advantage in the Single-Vectored Interrupt,

and the iAPX 88/10 using fewer instructions in the
Multi-Vectored Interrupt. For the other programs, the
iAPX 88’s use of string instructions, and its ability to
handle 8-bit or 16-bit data allowed the algorithms to be
implemented in fewer lines of code. The Adjusted
Average Normalized Lines of Code was 2.67 showing
that the iAPX 88 used less lines of code than the
MC6809 by a factor of more than 2.6 to 1.

Table 5. Ease of Programming

Lines of Code

Normalized Lines

Benchmark Program iAPX 88/10 MC6809 iAPX 88/10 MC6809
Computer Graphics 15 87 1 5.80
16-Bit Multiply 4 28 1 7.00
Vector Add 8 8 1 1.00
Block Move 7 14 1 2.00
Block Translate 10 13 1 1.30
Character Search 8 9 1 1.13
Word Shift 9 1 4.50
Reentrant Call 26 23 1 0.88
Single-Vectored Interrupt 15 1 1 0.07
Multi-Vectored Interrupt 1 8 1 8.00

Average Normalized Number of Lines of Code* 1 3.17
Adjusted Average Normalized Number of Lines of Code* 1 ‘ 2.95
*See note, Table 2, for description of average calculations.
| IAPX 8810 IAPX 88/10
NER 1.00

E Avg\me

x AGE 6809

% B w 3,. 3.19 AVERAGE s pysTED

= 6809 e 2.94 | AVERAGE

£ ADJUSTED 6809 & ADJUSTED 267

sz AVERAGE ADJUSTED H AVERAGE

=Lt) AVERAGE 82l XT)

g3 s y

<w P

g2 £ oo00 2

8= AVERAGE AVERAGE] J| 1aPx 88 IAPX 88

3 a .24 1.00 1.00

3

o

z

HIGHEST SPEED SPEED WITH EQUAL MEMORY BYTES OF CODE LINES OF CODE
ACCESS TIME

Graph I. Normalized Average Throughput:
5 MHz iAPX 88/10 vs 2 MHz 6809

26

Graph II. Normalized Average Memory Use and Lines
of Code: iAPX 88/10 vs 6809

AFN 01532A

APPENDIX

CONCLUSION

The results of this benchmark study show that for the
programs used, the Intel iAPX 88/10 significantly out-
performed the Motorola MC6809. In absolute execution
speed, the iAPX 88/10 proved to be 86% faster than the
MC6809 (using the Adjusted Average). When compared
at equal memory access times, the iAPX 88/10 outper-
formed the MC6809 by 110%. On the basis of coding
efficiency, the iAPX 88/10 generated less than half as
much object code as the MC6809. In the Ease of Pro-
gramming category, the results showed that the MC6809
required more than 2.6 times the number of lines of
code required by the iAPX 88/10. These results are
summarized in the table below.

Table 6. Performance Breakdown

Performance Ratio of

Performance Category iAPX 88 to MC6809
Execution Speed iAPX 88/10 is 1.86X
(Fastest) faster
Execution Speed* iAPX 88/10 is 2.10X
faster

iAPX 88/10 is 1.47X
more efficient

iAPX 88/10 is 2.67X
more efficient

Coding Efficiency

Ease of Programming

*With equal speed memory

27

The iAPX 88 is the highest performance 8-bit micro-
processor in the market today. The already superior per-
formance of the iAPX 88 will be increased by 60% when
the 8: MHz version is available in 1981. This, together
with the upgrade path to other object code compatible
processor series in the Microsystem 80 product line
(IAPX 86, iAPX 188, 186 and iAPX 286, 288), and the
unequalled hardware and software support, makes it
clear that Intel delivers the best solution to the many ap-
plications which require a powerful 8-bit microproc-
€essor.

AFN 01532A

APPENDIX

APPENDIX |

BENCHMARK PROGRAM CODE AND FLOWCHARTS*

READ M1

!

READ M2

!

P2:P1=M1x M2

!

STORE P1

!

STORE P2

!

Figure 1. 16-Bit Multiply Flowchart

*This appendix contains the code and flowcharts for three of the benchmark programs (16-Bit Multiply, Block Move,
and Character Search). For the code and flowcharts for all benchmark programs contact your local Intel sales office.

28 AFN 01532A

APPENDIX

BENCHMARK: 16-Bit Multiply

PROCESSOR: Intel jAPX 88
;REGISTER USAGE:
5 AX- ACCUMULATOR
5 DX- ACCUMULATOR

Bytes Cycles

3 18 MOv AX, Ml ;Read operand
4 137 MUL - M2 ;A*B

3 19 MOv P1,AX ;Store LSB

4 19 MOv pPz,DX ;Store MSB

14 bytes of code
4 lines of code

29 AFN 01532A

APPENDIX

BENCHMARK: 16-Bit Multiply
PROCESSOR: Motorola 6809

;REGISTER USAGE:

5 D - ACCUMULATOR

; X - OPERAND POINTER

5 Y - OPERAND POINTER

; U - PRODUCT POINTER

Bytes Cycles

3 3 LDX #AA ;Pointer to multiplicand A(MS Byte)
4 5 LDY #BB ;Pointer to multiplicand B(MS Byte)
3 3 LDU #MO ;Pointer to product
2 6 CLR o,u ;CLR MO
2 6 CLR 1,U sCLR M1
2 5 LDA 1,X ;Read LS byte of A (AL)
2 5 LDB 1,Y ;Read LS byte of B (BL)
1 1 MUL ;AL*BL
2 6 STD 2,U ;Store in M3:M2
2 4 LDA 0,X ;Read MS byte of A (AH)
2 5 LDB 1,Y ;Read LS byte of B (BL)
1 11 MUL sAH*BL
2 7 ADDD 1,U ;AH*BL + MS byte from AL*BL
2 6 STD 1,U ;Store in M2:Ml
2 3 BCC AB1 ;Skip INC if no carry
2 6 INC 0,U ;Add carry to MO
2 5 AB1 LDA 1,X ;Read LS byte of A (AL)
4 4 LDB 0,Y ;Read LS byte of B (BH)
1 11 MUL sAL*BH
2 7 ADDD 1,U sAL*BH+ M2:M1
2 6 STD 1,U ;Store in Mz:Ml
b4 3 BCC AB2 ;Skip INC if no carry
2 6 INC o,u ;Add carry to MO
2 4 AB2 LDA 0,X ;Read AH
Z 4 LDB 0,Y ;Read BH
1 11 MUL sAH*BH
2 7 ADDD 0,U ;AH*BH +M1 + carries
2 6 STD 0,U ;Store in M1:MO

56 bytes of code
28 lines of code

30 AFN 01532A

APPENDIX

INITIALIZE SOURCE
AND DESTINATION
POINTERS

!

INITIALIZE BLOCK
LENGTH

v

ADJUST BLOCK
LENGTH

Y

LENGTH = LENGTH/2

!

MOVE WORD

i

LENGTH =
LENGTH-1

Figure 2. Block Move Flowchart

31 AFN 01532A

APPENDIX

BENCHMARK: Block Move
PROCESSOR: Intel iAPX 88

;REGISTER USAGE:

3 CX - BLOCK LENGTH
o SI - SOURCE POINTER
3 DI - DESTINATION POINTER

Bytes Cycles

1 2 CLD ;Clear direction flag

3 4 MOv SI,FROM ;Initialize Source Pointer

3 4 MOv DI, TO ;Initialize Destination Pointer
3 4 MOv CX,LNGTH ;Initialize Block Length

1 2 INC CX 3

3 2 SHR CX,1 ;Adjust LNGTH for word moves

2 9+25/ REP MOVS TO, FROM ;sMove Block

15 bytes of code
7 lines of code

32 AFN 01532A

APPENDIX

Block Move

Motorola 6809

BENCHMARK :
PROCESSOR:
Bytes Cycles

4 4

3 3

3 3

1 2

2 3

1 2

1 2 SHIFT

1 2

2 8 MOVE

2 8

1 2

2 3

1 2

V4 3

LDY
LDU
LDD
INCB
BNC
INCA
LSRA
RORB
LDX
STX
DECB
BNE
DECA
BNE

sREGISTER USAGE

5 D - Block Length

5 X - Temporary Storage

5 Y - Source Pointer

5 U - Destination Pointer

#FROM
#T0
#LENGTH

SHIFT

LY+
JU++

MOVE
MOVE

26 bytes of code
14 lines of code

33

;Initialize Source Pointer
sInitialize Destination Pointer
:Initialize Block Length

;Add one to avoid losing a
; byte if LENGTH is odd
sAdjust LENGTH for word

5 moves

;Read word

;Store word

;LS Count

sMS Count

AFN 01532A

APPENDIX

INPUT SRCH CHAR
FROM MEMORY

'

X=TBLPTR

'

Y=TBL LENGTH

!

CHAR(X)=
SRCH CHAR?

Figure 3. Character Search Flowchart

34

AFN 01532A

APPENDIX

BENCHMARK: Character Search
PROCESSOR: Intel iAPX 88
sREGISTER USAGE:
3 AL - ACCUMULATOR

H “CX - COUNT
: DI - TABLE POINTER

Bytes Cycles

4 6 LEA DI,PTR ;Initialize Table Pointer

2 4 MOv AL, CHAR ;Search character

3 4 Mov CX,40 sInitialize count

1 2 CLD ; ;Clear direction flag

¢ 9+15/ REPNE SCAS PTR - ;Search

2 l6/4 Jz - PASTPTR ;dump if found

3 4 Mov DI,1 ;Not found:DI will return O
1 2 PASTPTR:DEC DI sAdjust DI

18 bytes of code
8 Tines of code

35 AFN 01532A

APPENDIX

BENCHMARK : Character Search
PROCESSOR: Motorola 6809
;REGISTER USAGE:
; A - ACCUMULATOR

5 B - COUNT
X - TABLE POINTER

Bytes Cycles

3 3 4DX #PTR ;Initialize Table Pointer

2 2 LDA #CHAR ;Search character

4 2 LDB - #40 ;Initialize count

2 6 AGAIN CMPA S X+ ;Compare, autoincrement

4 3 BEQ PASTPTR ;Jdump if found

1 2 DECB ;Decrement count

2 3 BNE AGAIN ;Do again unless B=0

3 3 LDX #1 ;Not found: X will return O
2 5 PASTPTR LEAX -1,X ' ;Adjust X

19 bytes of code
9 lines of code

36 AFN 01532A

intal

iAPX 88/10
(8088)
8-BIT HMOS MICROPROCESSOR

m 8-Bit Data Bus Interface

m 16-Bit Internal Architecture

m Direct Addressing Capability to 1 Mbyte

of Memory

= Direct Software Compatibility with

iAPX 86/10 (8086 CPU)

PRELIMINARY

m 24 Operand Addressing Modes
= Byte, Word, and Block Operations

= 8-Bit and 16-Bit Signed and Unsigned
Arithmetic in Binary or Decimal,
Including Multiply and Divide

= Compatible with 8155-2, 8755A-2 and

B 14-Word by 16-Bit Register Set with

Symmetrical Operations

8185-2 Multiplexed Peripherals

The Intel® iAPX 88/10 is a new generation, high performance microprocessor implemented in N-channel, depletion load,
silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package. The processor has attributes of both 8- and
16-bit microprocessors. It is directly compatible with iAPX 86/10 software and 8080/8085 hardware and peripherals.

MEMORY INTERFACE

B-BUS
ES
BUS - cs
INTERFACE Ss
UNIT DS

AH
BH
CH cL
EXECUTION DH oL
UNIT SP

BP

SI

DI

INSTRUCTION 3
STREAM BYTE
QUEUE 2

EXECUTION UNIT
CONTROL
SYSTEM

ARITHMETIC/
LOGIC UNIT
1

Figure 1. iAPX 88/10 CPU Functional Block Diagram

GND 1 ~ a0
A4 52 39
A13 3 38
A12 q 4 37
A1 5 36
A0 Ee 35
A9 7 34
A8 []s8 33
AD? []9 32
Aoe []10 g?: 31
ADS [] 11 30
AD4 []12 29
AD3 []13 28
AD2 []14 27
AD1 []15 26
ADO []16 25
NMI [17 24
INTR []18 23
CLK []19 22
GND []20 21

OO0000000ggogooooooog

MIN
MODE
Vee
A15
A16/S3
A17IS4
A18IS5
A19/S6
$S0
MN/MX
RD
HOLD
HLDA
WR
1o/m
DTR
DEN
ALE
INTA
TEST
READY
RESET

R

(HIGH)

(RQIGTO)
(RQIGTY)
(LOCK)
S2)

1)

50)

(@S0)
(@s1)

Figure 2. iAPX 88/10 Pin Configuration

37

intel

iAPX 88/10 PRELIMINARY

Table 1. Pin Description

The following pin function descriptions are for 8088 systems in either minimum or maximum mode. The “‘local bus” in
these descriptions is the direct multiplexed bus lnterface connection to the 8088 (without regard to additional bus

buffers).

Symbol

Pin No.

Type

Name and Function

AD7-ADO

9-16

/0

_edge’.

Address Data Bus: These lines constitute the time multiplexed memory/IO
address (T1) and data (T2, T3, Tw, and T4) bus. These lines are active HIGH and
float to 3-state OFF during interrupt acknowledge and local bus “*hold acknowl-

A15-A8

2-8, 39

Address Bus: These lines provide address bits 8 through 15 for the entire bus
cycle (T1-T4). These lines do not have to be latched by ALE to remain valid.
A15-A8 are active HIGH and float to 3-state OFF during mterrupt acknowledge
and local bus “hold acknowledge”.

A19/S6, A18/85,
A17/S4, A16/S3

34-38 .

Address/Status: During T1, these are the four

most significant address lines for memory op-

erations. During I/O operations, these lines are

LOW. During memory and I/O operations, status

information is avaiiabie on these iines during

T2,783, TW, andT4.S6is alway‘s low. The status of s4 Ts: | CHARACTERISTICS
the interrubt enable flag bit (S5) is updated at o Low i 9 | Aternate Data
the beginning of each clock cycle. S4 and S3 are JMiGH) | 0 | Code or None
encoded as shown. ssisowow) |

This information indicates which segment reg-
ister is presently being used for data accessing.

These lines float to 3-state OFF during local bus
“hold acknowledge’.

32

Read: Read strobe indicates that the processor is performing a memory or I/O
read cycle, depending on the state of the I0/M pin or S2. This signal is used to
read devices which reside on the 8088 local bus. RD is active LOW during T2, T3
and Tw of any read cycle, and is guaranteed to remain HIGH in T2 until the 8088
local bus has floated.

This signal floats to 3-state OFF in “‘hold acknowledge”.

READY

22

READY: isthe acknowledgement from the addressed memory or I/O device that
it will complete the data transfer. The RDY signal from memory or I/O is syn-
chronized by the 8284 clock generator to form READY. This signal is active
HIGH. The 8088 READY input is not synchronized. Correct operation is not
guaranteed if the set up and hold times are not met.

INTR

Interrupt Request: is a level triggered input which is sampled during the last
clock cycle of each instruction to determine if the processor should enterinto an
interrupt acknowledge operation. A subroutine is vectored to via an interrupt
vector lookup table located in system memory. It can be internally masked by
software resetting the interrupt enable bit. INTR is internally synchronized. This
signal is active HIGH.

TEST

23

TEST: input is examined by the “wait for test” instruction. If the TEST input is
LOW, execution continues, otherwise the processor waits in an "‘idle” state. This
input is synchronized internally during each clock cycle on the leading edge of
CLK.

NMI

17

Non-Maskable Interrupt: is an edge triggered input which causes a type 2
interrupt. Asubroutine is vectored to via an interrupt vector lookup table located
in system memory. NMI is not maskable internally by software. A transition from
a LOW to HIGH initiates the interrupt at the end of the current instruction. This
input is internally synchronized.

38 AFN-008268

Intel iAPX 88/10 PRELIMINARY

Table 1. Pin Description (Continued)

Symbol Pin No. | Type Name and Function

RESET 21 | RESET: causes the processor to immediately terminate its present activity. The
signal must be active HIGH for at least four clock cycles. It restarts execution, as
described in the instruction set description, when RESET returns LOW. RESET
is internally synchronized.

CLK 19 | Clock: provides the basic timing for the processor and bus controller. It is
asymmetric with a 33% duty cycle to provide optimized internal timing.

Vce 40 Vcc: is the +5V =10% power supply pin.

GND 1, 20 GND: are the ground pins.

MN/MX 33 I Minimum/Maximum: indicates what mode the processor is to operate in. The

two modes are discussed in the following sections.

The following pin function descriptions are for the 8088 minimum mode (i.e., MN/MX = V). Only the pin functions which
are unique to minimum mode are described; all other pin functions are as described above.

10/M 28 O | Status Line: is an inverted maximum mode S2. It is used to distinguish a
memory access from an I/O access. |IO0/M becomes valid in the T4 preceding a
bus cycle and remains valid until the final T4 of the cycle (/O=HIGH, M=LOW).
10/M floats to 3-state OFF in local bus “hold acknowledge”:

WR 29 o Write: strobe indicates thatthe processor is performing a write memory or write
I/0 cycle, depending on the state of the I0/M signal. WR is active for T2, T3, and
Tw of any write cycle. It is active LOW, and floats to 3-state OFF in local bus “*hold
acknowledge’.

INTA 24 (0] INTA: is used as aread strobe forinterrupt acknowledge cycles. It is active LOW
during T2, T3, and Tw of each interrupt acknowledge cycle.

ALE 25 (e] Address Latch Enable: is provided by the processor to latch the address into
. the 8282/8283 address latch. It is a HIGH pulse active during clock low of T1 of
any bus cycle. Note that ALE is never floated.

DT/R 27 o Data Transmit/Receive: is neededin a minimum system that desires to use an
8286/8287 data bus transceiver. It is used to control the direction of data flow
through the transceiver. Logically, DT/R is equivalent to §1 in the maximum
mode, and its timing is the same as for I0/M (T=HIGH, R=LOW). This signal
floats to 3-state OFF in local “hold acknowledge”.

o
m
P-4

26 [¢) Data Enable: is provided as an output enable for the 8286/8287 in a minimum
system which uses the transceiver. DEN is active LOW during each memory and
1/0 access, and for INTA cycles. For a read or INTA cycle, it is active from the
middle of T2 until the middle of T4, while for a write cycle, it is active from the
beginning of T2 until the middle of T4. DEN floats to 3-state OFF during local bus
“hold acknowledge”.

HOLD, HLDA 30,31 I, O | HOLD: indicates that another master is requesting a local bus “hold”. To be
acknowledged, HOLD must be active HIGH. The processor receiving the “*hold”
request will issue HLDA (HIGH) as an acknowledgement, in the middle of a T4 or
Tl clock cycle. Simultaneous with the issuance of HLDA the processor will float
the local bus and control lines. After HOLD is detected as being LOW, the
processor lowers HLDA, and when the processor needs to run another cycle, it
will again drive the local bus and control lines.

Hold is not an asynchronous input. External synchronization should be
provided if the system cannot otherwise guarantee the set up time.

SSO 34 (e] Status line: is logically equivalent toﬁ—ginth_e \oW_| oviA | 55 | cHAmactemistics |
maximum mode. The combination of SSO, I0/M 1K
and DT/R allows the system to completely de- :
code the current bus cycle status.

Interrupt Acknowledge
Read 1/0 port

Write 110 port

Halt

Code access

Read memory

Write memory

Passive

1
0 (Low)
0

0
0

~sco4-0o0
to-cs0-o0

39 AFN-00826B

intel

iAPX 88/10 PRELIMINARY

The following pin function descriptions are for the 8088, 8228 system in maximum mode (i.e., MN/MX=GND.) Only the pin

Table 1. Pin Description (Continued)

functions which are unique to maximum mode are described; all other pin functions are as described above.

Symbol - Pin No.| Type

Name and Function

§2, §1, 50 | 26-28 o

Status: is active during clock high of T4, T1,
and T2, and is returned to the passive state
(1,1,1) during T3 or during Tw when READY is
HIGH. This status is used by the 8288 bus con-
troller to generate all memory and 1/O access

control signals. Any change by S2, S1, or 50 2 15| % | o

during T4 is used to indicate the beginning of a guom | o | o | imeruot ackoowiesse
bus cycle, and the return to the passive state in 0 [1] 9| Witewopon
T3.or Tw is used to indicate the end of a bus FHE 0§ | Rl ccess
cycle. R

These signals float to 3-state OFF during ‘‘hold
acknowledge”. During the first clock cycle after:
RESET becomes active, these signals are active
HIGH. After this first clock, they float to 3-state
OFF.

Q/GTO, 30, 31 /0

Request/Grant: pins are used by other local bus masters to force the processor
to release the local bus at the end of the processor’s current bus cycle. Each pin
is bidirectional with RQ/GTO having higher priority than RQ/GT1. RQ/GT has an
internal pull-up resistor, so may be left unconnected. The request/grant se-

quence is as follows (See Figure 8): -

1. Apulse of one CLK wide from another local bus master indicates a local bus
request (“‘hold”) to the 8088 (pulse 1).

2. During a T4 or Tl clock cycle, a pulse one clock wide from the 8088 to the
requesting master (pulse 2), indicates that the 8088 has allowed the local bus
to float and that it will enter the “*hold acknowledge’ state at the next CLK.
The CPU’s bus interface unit is disconnected logically from the local bus

far LN N/UNI DA annhy

i s ” anfar
during "hold acknowledge”. The same rules as for HOLD/HOLDA apply as for

GQunng nCiGaCKknow:e Lanedamer

when the bus is released.

3. Apulse one CLK wide from the requesting master indicates to the 8088 (pulse
3) that the “‘hold” request is about to end and that the 8088 can reclaim the
local bus at the next CLK. The CPU then enters T4.

Each master-master exchange of the local bus is a sequence of three pulses.
There must be one idle CLK cycle after each bus exchange. Pulses are active
LOW.

If the request is made while the CPU is performing a memory cycle, it will release
the local bus during T4 of the cycle when all the following conditions are met:

1. Request occurs on or before T2.

2. Current cycle is not the low bit of a word.

3. Current cycle is not the first acknowledge of an interrupt acknowledge
sequence.

4. A locked instruction is not currently executing.

If the local bus is idle when the request is made the two possible events will
follow:

1. Local bus will be released during the next clock.
2. A memory cycle will start within 3 clocks. Now the four rules for a currently
active memory cycle apply with condition number 1 already satisfied.

40 AFN-008268

ntel

iAPX 88/10

PRELIMINARY

Table 1. Pin Description (Continued)

Pin No.

Symbol Type Name and Function

LOCK 29 0 LOCK: indicates that other system bus masters are not to gain control of the
system bus while LOCK is active (LOW). The LOCK signal is activated by the
“LOCK” prefix instruction and remains active until the completion of the next
instruction. This signal is active LOW, and floats to 3-state off in “‘hold acknowl-
edge’’.

QS1,QS0 | 24,25 O Queue Status: provide status to allow external PRV POV I—
tracking of the internal 8088 instruction queue. 0(Low) | 0 | No operation

0 First byte of opcode from queue

The queue status is valid during the CLK cycle e o queue
after which the queue operation is performed. -

—_ 34 o Pin 34 is always high in the maximum mode.

41

AFN-00826B

intel

iAPX 88/10

PRELIMINARY

FUNCTIONAL DESCRIPTION

Memory Organization

The processor provides a 20-bit address to memory which
locates the byte being referenced. The memory is orga-
nized as a linear array of up to 1 million bytes, addressed
as 00000(H) to FFFFF(H). The memory is logically divided
into code, data, extra data, and stack segments of up to
64K bytes each, with each segment falling on 16-byte
boundaries. (See Figure 3.)

All memory references are made relative to base
addresses contained in high speed segment registers. The
segment types were chosen based on the addressing
needs of programs. The segment register to be selected is
automatically chosen according to the rules of the follow-
ing table. All information in one segment type share the
same logical attributes (e.g. code or data). By structuring
memory into relocatable areas of similar characteristics
and by automatically selecting segment registers, pro-
grams are shorter, faster, and more structured.

Word (16-bit) operands can be located on even or odd ad-
dress boundaries. For address and data operands, the
least significant byte of the word is stored in the lower
valued address location and the most significant byte in

7 0
y— FFFFFH

64 KB }CODE SEGMENT

3. XXXXOH

L

} STACK SEGMENT

SEGMENT ([wss] l
REGISTER FILE WORD } =Te5] | DATA SEGMENT
Cs BYTE f
SS
DS
ES T T
EXTRA DATA SEGMENT
T———T00000H

Figure 3. Memory Organization

the next higher address location. The BIU will auto-
matically execute two fetch or write cycles for 16-bit
operands.

Certain locations in memory are reserved for specific
CPU operations. (See Figure 4.) - Locations .from ad-
dresses FFFFOH through FFFFFH are reserved for
operations including a jump to the initial system initial-
ization routine. Following RESET, the CPU will always
begin execution at location FFFFOH where the jump
must be located. Locations 00000H through 003FFH are
reserved for interrupt operations. Four-byte pointers
consisting of a 16-bit segment address and a 16-bit off-
set address direct program flow to one of the 256 possi-
ble interrupt service routines. The pointer elements are
assumed to have been stored at their respective places
in reserved memory prior to the occurrence of inter-
rupts.

Minimum and Maximum Modes

The requirements for supporting minimum and maxi-
mum 8088 systems are sufficiently different that they
cannot be done efficiently with 40 uniquely defined
pins. Consequently, the 8088 is equipped with a strap
pin (MN/MX) which defines the system configuration.
The definition of a certain subset of the pins changes,
dependent on the condition of the strap pin. When the
MN/MX pin is strapped to GND, the 8088 defines pins 24
through 31 and 34 in maximum mode. When the MN/MX
pin is strapped to Vgg, the 8088 generates bus control
signals itself on pins 24 through 31 and 34.

FFFFFH
RESET BOOTSTRAP

PROGRAM JUMP

FFFFOH
e
:" ° >

I

INTERRUPT POINTER
FOR TYPE 255

I : I

3FFH

3FOH

7H
INTERRUPT POINTER
FOR TYPE 1

INTERRUPT POINTER
FOR TYPE 0

4H
3H

OH

Figure 4. Reserved Memory Locations

Memory Segment Register Segment
Reference Need Used Selection Rule
Instructions CODE (CS) Automatic with all instruction prefetch.
Stack STACK (SS) All stack pushes and pops. Memory references relative to BP
base register except data references.
Local Data DATA (DS) Data references when: relative to stack, destination of string
operation, or explicitly overridden.
External (Global) Data EXTRA (ES) Destination of string operations: Explicitly selected using a
segment override.

42

AFN-008268B

intel

iAPX 88/10

PRELIMINARY

The minimum mode 8088 can be used with either a
multiplexed or demultiplexed bus. The muiltiplexed bus
configuration is compatible with the MCS-85™ multi-
plexed bus peripherals (8155, 8156, 8355, 8755A, and
8185). This configuration (See Figure 5) provides the user
with a minimum chip count system. This architecture
provides the 8088 processing power in a highly integrated
form.

The demultiplexed mode requires one latch (for 64K ad-
dressability) or two latches (for a full megabyte of ad-
dressing). A third latch can be used for buffering if the
address bus loading requires it. An 8286 or 8287 trans-
ceiver can also be used if data bus buffering is required.
(See Figure 6. The 8088 provides DEN and DT/R to con-

trol the transceiver, and ALE to latch the addresses.
This configuration of the minimum mode provides the
standard demultiplexed bus structure with heavy bus
buffering and relaxed bus timing requirements.

The maximum mode employs the 8288 bus controller.
(See Figure 7.0 The 8288 decodes status lines S0, 51,
and S2, and provides the system with all bus control
signals. Moving the bus control to the 8288 provides
better source and sink current capability to the controi
lines, and frees the 8088 pins for extended large system
features. Hardware lock, queue status, and two request/
grant interfaces are provided by the 8088 in maximum
mode. These features allow co-processors in local bus
and remote bus configurations.

43 AFN-00826B

ntal IAPX 88/10 PRELIMINARY

H— cE PORT
A
WR
"
D 8
8155 f
ALE poRT
DATA/ ¢
ADDR
_ INf—
I0/M TIMER
L -
reseT OUT
Ag-Arg ADDR) iow
RD
ADo — AD7 ADDR/DATA ALE
cLK PORT m
+— CE A
Z_‘ > Ag 1o
S088 8355/8755A
READY
_ DATA/
MN/MX ——Vcc ADDR
vee l"i 0 "I ALE 10/ poRT
T AP 1 RESET 8
X1 X2 _
cik WR — Ve
READY o — ioR
RES
8284A
RESET — Vss Vec Voo PROG
GND WR
RD
CE,
8185
ALE
ST cs.ce,
T Ag. A
> a0y,

Vs Vee

Figure 5. Multiplexed Bus Configuration

44

AFN-00826B

iAPX 88/10

PRELIMINARY

Vee

cLoCK
GENERATOR [[CL% MNMIX [— Vce
RES READY o/l .)
RESET ®B -
1 wn ,
GND 8088
P A 5
oTR
- %
ALE sT8 | | ‘
|
ADg - AD; ___L_| * | l J X
TA]
As—Arg Cj Dn/m:> 2085 L Alm?“ss]
INTR | f
| | |
T | | |
ﬁ | i
8286 ‘ D‘AY‘A l 4
TRANSCEIVER \,7 T 5
EN WE 0D OE cs RD WR
2142 RAM (2) 2716-2 PROM MCS-80
PERIPHERAL
8259A [T
INTERRUPT [«
CONTROL
INT
T IR0-7
Figure 6. Demultiplexed Bus Configuration
Vee n
Lol !
8284A [MN/MX |=— GND CLK jiRoC |-
CLOCK = = _
GENERATOR [[CHK S0 S mwTC ’
RES READY Sy s AMWC |—N.C |
RESET B §; 8288 1ORC !
I DEN C,:f,‘ iowc] .
GND 8088 OTIR RIOWC |—N.C Pl
cPy |
ALE INTA ?
STB
O_E 1
AD - AD7 LATCH I 0
Ag— At 1,2 OR 3) ADDRESS
e T 1T] T
|
INT | | |
| | |
i ‘ | |
T | | |
OE I | l [|
8286] I | | "
TRANSCEIVER DATA : s
WE 0D OE cs RD WR
2142 RAM (2) 2716-2 PROM MCS-80
PERIPHERAL

8259A
INTERRUPT
CONTROL

<;:|nu-7

Figure 7. Fully Buffered System Using Bus Controller

45

AFN-00826B

intel

iAPX 88/10

PRELIMINARY

Bus Operation

The 8088 address/data bus is broken into three parts —
the lower eight address/data bits (ADO-AD7), the middle
eight address bits (A8-A15), and the upper four address
bits (A16-A19). The address/data bits and the highest
four address bits are time multiplexed. This technique
provides the most efficient use of pins on the proc-
essor, permitting the use of a standard 40 lead package.
The middle eight address bits are not multipiexed, i.e.
they remain valid throughout each bus cycle. In addi-

tion, the bus can be demultiplexed at the processor with
a single address latch if a standard, non-multiplexed
bus is desired for the system.

Each processor bus cycle consists of at least four CLK
cycles. These are referred to as T1, T2, T3, and T4. (See
Figure 8). The address is emitted from the processor
during T1 and data transfer occurs on the bus during T3
and T4. T2 is used primarily for changing the direction of
the bus during read operations. In the event that a “NOT
READY” indication is given by the addressed device,

4+ Nwam)=Tcy

(4 +Nwam =Tcy
T | T2 | T3 | Twair ! Ta

oo] T | Twar | T

GOES INACTIVE IN THE STATE
JUST PRIORTO T4

.

“ Jy

N

[

ADDRISTATUS

N

A1s-Ag

(Atg-Ats X $7-S3
ADDR ><

>< AtgAte X $7-S3

\!/

\ / \
__/ susReserveD ;0o
ADDRIDATA ArAo)‘ 'Q FOR DATA IN) VALID)‘

Ats-Ag x
\ /\ /
DATA OUT (D7-Dg))— - -< ><

— |

READY

READY

READY

DTIR _L

WAIT

WAIT

MEMORY ACCESS TIME——

R U

1

Figure 8. Basic System Timing

AFN-00826B

intel

iAPX 88/10

PRELIMINARY

“wait” states (Tw) are inserted between T3 and T4. Each
inserted “wait” state is of the same duration as a CLK
cycle. Periods can occur between 8088 driven bus
cycles. These are referred to as “idle’” states (Ti), or inac-
tive CLK cycles. The processor uses these cycles for in-
ternal housekeeping.

During T1 of any bus cycle, the ALE (address latch
enable) signal is emitted (by either the processor or the
8288 bus controller; depending on the MN/MX strap). At
the trailing edge of this pulse, a valid address and cer-
tain status information for the cycle may be latched.

Status bits S0, §, and S2 are used by the bus controller,
in maximum mode, to identify the type of bus transac-
tion according to the following table:

§2 §1 | S0 | CHARACTERISTICS

0 (Low) 0 0 Interrupt Acknowledge
0 0 1 Read I/O

0 1 0 Write /1O

0 1 1 Halt

1(High) 0 0 Instruction fetch

1 0 1 Read data from memory
1 1 0 Write data to memory

1 1 1 Passive (no bus cycle)

Status bits S3 through S6 are multiplexed with high
order address bits and are therefore valid during T2
through T4, S3 and S4 indicate which segment register
was used for this bus cycle in forming the address ac-
cording to the following table:

S4 S3 CHARACTERISTICS

0 (Low) 0 .| Alternate data (Extra Segment)
Q 1 Stack

1 (High) 0 Code or none

1. 1 Data

S5 is a reflection of the PSW interrupt enable bit. S6 is
always equal to 0.

110 Addressing

In the 8088, /O operations can address up to a maxi-
mum of 64K I/O registers. The I/O address appears in the
same format as the memory address on bus lines
A15-A0. The address lines A19-A16 are zero in |/O
operations. The variable /O instructions, which use
register DX as a pointer, have full address capability,
while the direct I/O instructions directly address one or
two of the 256 1/O byte locations in page 0 of the /O ad-
dress space. I/O ports are addressed in the same man-
ner as memory locations.

Designers familiar with the 8085 or upgrading an 8085
design should note that the 8085 addresses I/O with an
8-bit address on both halves of the 16-bit address bus.
The 8088 uses a full 16-bit address on its lower 16 ad-
dress lines.

EXTERNAL INTERFACE

Processor Reset and Initialization

Processor initialization or start up is accomplished with
activation (HIGH) of the RESET pin. The 8088 RESET is
required to be HIGH for greater than four clock cycles.
The 8088 will terminate operations on the high-going
edge of RESET and will remain dormant as long as
RESET is HIGH. The low-going transition of RESET trig-
gers an internal reset sequence for approximately 7
clock cycles. After this interval the 8088 operates nor-
mally, beginning with the instruction in absolute loca-
tion FFFFOH. (See Figure4) The RESET input is inter-
nally synchronized to the processor clock. At initializa-
tion, the HIGH to LOW transition of RESET must occur
no sooner than 50 us after power up, to allow complete
initialization of the 8088.

If INTR is asserted sooner than nine clock cycles after
the end of RESET, the processor may execute one in-
struction before responding to the interrupt.

All 3-state outputs float to 3-state OFF during RESET.
Status is active in the idle state for the first clock after
RESET becomes active and then floats to 3-state OFF.

Interrupt Operations

Interrupt operations fall into two classes; software or
hardware initiated. The software initiated interrupts and
software aspects of hardware interrupts are specified in
the instruction set description in the 8086 Family User’s
Manual. Hardware interrupts can be classified as non-
maskable or maskable.

Interrupts result in a transfer of control to a new pro-
gram location. A 256 element table containing address
pointers to the interrupt service program locations
resides in absolute locations 0 through 3FFH (see Fig-
ure 4), which are reserved for this purpose. Each ele-
ment in the tabie is 4 bytes in size and corresponds to
an interrupt “type”. An interrupting device supplies an
8-bit type number, during the interrupt acknowledge se-
quence, which is used to vector through the appropriate
element to the new interrupt service program location.

Non-Maskable Interrupt (NMI)

The processor provides a single non-maskable interrupt
(NMI) pin which has higher priority than the maskable in-
terrupt request (INTR) pin. A typical use would be to acti-
vate a power failure routine. The NMI is edge-triggered
on a LOW to HIGH transition. The activation of this pin
causes a type 2 interrupt.

NMI is required to have a duration in the HIGH state of
greater than two clock cycles, but is not required to be
synchronized to the clock. Any higher going transition
of NMI is latched on-chip and will be serviced at the end
of the current instruction or between whole moves (2
bytes in the case of word moves) of a block type instruc-
tion. Worst case response to NMI would be for multiply,
divide, and variable shift instructions. There is no
specification on the occurrence of the low-going edge; it
may occur before, during, or after the servicing of NMI.
Another high-going edge triggers another response if it

AFN-00826B

intel

iAPX 88/10

PRELIMINARY

occurs after the start of the NMI procedure.. The signal
must be free of logical spikes in general and be free of
bounces on the low-going edge to avoid triggering ex-
traneous responses.

Maskable Interrupt (INTR)

The 8088 provides a single interrupt request input (INTR)
which can be masked internally by software with the
resetting of the interrupt enable (IF) flag bit. The in-
terrupt request signal is level triggered. It is internally
synchronized during each clock cycle on the high-going
edge of CLK. To be responded to, INTR must be present
(HIGH) during the clock period preceding the end of the
current instruction or the end of a whole move for a
block type instruction. During interrupt response se-
quence, further interrupts are disabled. The enable bit is
reset as part of the response to any interrupt (INTR,
NMI, software interrupt, or single step), although the
FLAGS register which is automatically pushed onto the
stack reflects the state of the processor prior to the in-
terrupt. Until the old FLAGS register is restored, the
enable bit will be zero unless specifically set by an in-
struction.

During the response sequence (See Figure 9), the proc-
essor executes two successive (back to back) interrupt
acknowledge cycles. The 8088 emits the LOCK signal
(maximum mode only) from T2 of the first bus cycle until
T2 of the second. A local bus “hold” request will not be
honored until the end of the second bus cycle. In the
second bus cycle, a byte is fetched from the external in-
terrupt system (e.g., 8259A PIC) which identifies the
source (type) of the interrupt. This byte is multiplied by
four and used as a pointer into the interrupt vector
lookup table. An INTR signal left HIGH will be continual-
ly responded to within the limitations of the enable bit
and sample period. The interrupt return instruction in-
cludes a flags pop which returns the status of the
original interrupt enable bit when it restores the flags.

HALT

When a software HALT instruction is executed, the
processor indicates that it is entering the HALT state in
one of two ways, depending upon which mode is
strapped. In minimum mode, the processor issues ALE,
delayed by one clock cycle, to allow the system to latch
the halt status. Halt status is available on I10/M, DT/R,
and SSO. In maximum mode, the processor issues ap-
propriate HALT status on S2, S1, and-S0, and the 8288
bus controller issues one ALE. The 8088 will not leave
the HALT state when a local bus hold is entered while in
HALT. In this case, the processor reissues the HALT in-
dicator at the end of the local bus hold. An interrupt re-
quest or RESET will force the 8088 out of the HALT
state.

Read/Modify/Write (Semaphore) Operations
via LOCK

The LOCK status information is provided by the proc-
essor when consecutive bus cycles are required during
the execution of an instruction. This allows the proc-
essor to perform read/modify/write operations on
memory (via the “exchange register with memory”
instruction), without another system bus master receiv-
ing intervening memory cycles. This is useful in multi-
processor system configurations to accomplish “test
and set lock” operations. The TOCK signal is activated
(LOW) in the clock cycle following decoding of the
LOCK prefix instruction. It is deactivated at the end of
the last bus cycle of the instruction following the LOCK
prefix. While LOCK is active, a request on a RQ/GT pin will
be recorded, and then honored at the end of the LOCK.

External Synchronization via TEST

As an alternative to interrupts, the 8088 provides a
single software-testable input pin (TEST). This input is
utilized by executing a WAIT instruction. The single

TYPEVECTOR

Figure 9. Interrupt Acknowledge Sequence

48

AFN-00826B

intel

iAPX 88/10

PRELIMINARY

WAIT instruction is repeatedly executed until the TEST
input goes active (LOW). The execution of WAIT does
not consume bus cycles once the queue is full.

If a local bus request occurs during WAIT execution, the
8088 3-states all output drivers. If interrupts are enabled,
the 8088 will recognize interrupts and process them.
The WAIT instruction is then refetched, and reexecuted.

Basic System Timing

In minimum mode, the MN/MX pin is strapped to V¢c
and the processor emits bus control signals compatible
with_the 8085 bus structure. In maximum mode, the
MN/MX pin is strapped to GND and the processor emits
coded status information which the 8288 bus controller
uses to generate MULTIBUS compatible bus control
signals.

System Timing — Minimum System
(See Figure 8.)

The read cycle begins in T1 with the assertion of the ad-
dress latch enable (ALE) signal. The trailing (low going)
edge of this signal is used to latch the address informa-
tion, which is valid on the address/data bus (ADO-AD7)
at this time, into the 8282/8283 latch. Address lines A8
through A15 do not need to be latched because they re-
main valid throughout the bus cycle. From T1 to T4 the
10/M signal indicates a memory or I/O operation. At T2
the address is removed from the address/data bus and
the bus goes to a high impedance state. The read con-
trol signal is also asserted at T2. The read (RD) signal
causes the addressed device to enable its data bus
drivers to the local bus. Some time later, valid data will
be available on the bus and the addressed device will
drive the READY line HIGH. When the processor returns
the read signal to a HIGH level, the addressed device
will again 3-state its bus drivers. If a transceiver
(8286/8287) _is required to buffer the 8088 locail bus,
signals DT/R and DEN are provided by the 8088.

A write cycle also begins with the assertion of ALE and
the emission of the address. The I10/M signal is again
asserted to indicate a memory or /O write operation. In
T2, immediately following the address emission, the
processor emits the data to be written into the ad-
dressed location. This data remains valid until at least
the middle of T4. During T2, T3, and Ty, the processor
asserts the write control signal. The write (WR) signal
becomes active at the beginning of T2, as opposed to
the read, which is delayed somewhat into T2 to provide
time for the bus to float.

The basic difference between the interrupt acknowl-
edge cycle and a read cycle is that the interrupt
acknowledge (INTA) signal is asserted in place of the
read (RD) signal and the address bus is floated. (See
Figure 9. In the second of two successive INTA cycles,
a byte of information is read from the data bus, as sup-
plied by the interrupt system logic (i.e. 8259A priority in-
terrupt controller). This byte identifies the source (type)
of the interrupt. It is multiplied by four and used as a
pointer into the interrupt vector lookup table, as de-
scribed earlier.

49

Bus Timing — Medium Complexity Systems
(See Figure 10.)

For medium complexity systems, the MN/MX pin is con-
nected to GND and the 8288 bus controller is added to
the system, as well as an 8282/8283 latch for latching
the system address, and an 8286/8287 transceiver to
allow for bus loading greater than the 8088 is capable of
handling: Signals ALE, DEN, and DT/R are generated by
the 8288 instead of the processor in this configuration,
although their timing remains relatively the same. The
8088 status outputs (52, S1, and S0) provide type of
cycle information and become 8288 inputs. This bus
cycle information specifies read (code, data, or 1/0),
write (data or 1/0), interrupt acknowledge, or software
halt. The 8288 thus issues control signals specifying
memory read or write, /0 read or write, or interrupt
acknowledge. The 8288 provides two types of write
strobes, normal and advanced, to be applied as required.
The normal write strobes have data valid at the leading
edge of write. The advanced write strobes have the
same timing as read strobes, and hence, data is not
valid at the leading edge of write. The 8286/8287 trans-
ceiver receives the usual T and OE inputs from the
8288's DT/R and DEN outputs.

The pointer into the intergﬁ vector table, which is
passed during the second INTA cycle, can derive from
an 8259A located on either the local bus or the system
bus. If the master 8289A priority interrupt controller is
positioned on the local bus, a TTL gate is required to
disable the 8286/8287 transceiver when reading from the
master 8259A during the interrupt acknowledge se-
quence and software “poll”.

The 8088 Compared to the 8086

The OUOO \JI’U Ib an O Dit processor ueblgneo around the
8086 internal structure. Most internal functions of the
8088 are identical to the equivalent 8086 functions. The
8088 handles the external bus the same way the 8086
does with the distinction of handling only 8 bits at a
time. Sixteen-bit operands are fetched or written in two
consecutive bus cycles. Both processors will appear
identical to the software engineer, with the exception of
execution time. The internal register structure is iden-
tical and all instructions have the same end result. The
differences between the 8088 and 8086 are outlined
below. The engineer who is unfamiliar with the 8086 is
referred to the 8086 Family User's Manual, Chapters 2
and 4, for function description and instruction set
information.

Internally, there are three differences between the 8088
and the 8086. All changes are related to the 8-bit bus in-
terface.

* The queue length is 4 bytes in the 8088, whereas the
8086 queue contains 6 bytes, or three words. The
queue was shortened to prevent overuse of the bus by
the BIU when prefetching instructions. This was re-
quired because of the additional time necessary to
fetch instructions 8 bits at a time.

AFN-00826B

Inter iAPX 88/10 PRELIMINARY

¢ To further optimize the queue, the prefetching algo-
rithm was changed. The 8088 BIU will fetch a new in-
struction to load into the queue each time thereisa 1
byte hole (space available) in the queue. The 8086
waits until a 2-byte space is available.

¢ The internal execution time of the instruction set is
affected by the 8-bit interface. All 16-bit fetches and
writes from/to memory take an additional four clock
cycles. The CPU is also limited by the speed of in-
struction fetches. This latter problem only occurs
when a series of simple operations occur, When.the
more sophisticated. instructions of the-8088 are being
used, the queue has time to fill and the execution pro-
ceeds as fast as the execution unit will allow.

The 8088 and 8086 are completely software compatible
by virture of their identical execution units. Software
that is system dependent may not be completely trans-
ferable, but software that is not system dependent will
operate equally as well on an 8088 or an 8086.

50

The hardware interface of the 8088 contains the major
differences between the two CPUs. The pin assign-
ments are nearly identical, however, with the foliowing
functional changes:

A8-A15 — These pins are only address outputs on the
8088. These address lines are latched internally and
remain -valid. throughout a bus. cycle in a manner
similar to the 8085 upper address lines.

BHE has no meaning on the 8088 and has been elimi-
nated.

SSO provides the SO status information in the mini-
mum mode. This output occurs on pin 34 in minimum
mode only. DT/R, 10/M, and SSO provide the complete
bus status in minimum mode. ST

10/M has been inverted to be compatible with the
MCS-85 bus structure.

ALE is delayed by one clock cycle in the minimum
mode when entering HALT, to allow the status to be
latched with ALE. :

AFN-008268

ntal IAPX 88/10 PRELIMINARY

T T2 Ts Ts

cLK __/—\ /\ Yam /-“-\ T\

Qs1,Qs0 X X prd X SH—

8088

al
Q
g
By
N
N
N
\
\
r
|
|
|
|
1

A19/S6 - A16/S3 D EIETED ¢ S6-53 X

" ALE ' j’
1
8288 RDY 8284 ; X
|
READY 8088 \

AD7 - AD0 ————————¢ A7- A0 :>———< DATA IN H
!
8088 A15- A8 X A15- AB X

DTR \ s /S

8288 { MRDC \ /

DEN ya AN

Figure 10. Medium Complexity System Timing

5 1 AFN-00826B

inte!

iAPX 88/10

PRELIMINARY

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias......... 0°Cto70°C
Storage Temperature............. -65°C to +150°C
Voltage on Any Pin with

Respectto Ground. -10to+7V

Power Dissipation

D.C. CHARACTERISTICS

2.5 Watt

*NOTICE: Stresses above those listed under “‘Absolute
Maximum Ratings’’ may cause permanent damage to the
device. This is a stress rating only and functional opera-
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi-
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

(Ta = 0°C to 70°C, Ve = 5V =10%)

| Symbol Parameter Min. Max. Units Test Conditions
ViL Input Low Voltage -05 +08 \'
Vin Input High Voltage 2.0 Vec+0.5 v
VoL Output Low Voltage 0.45 v loL = 20 mA
Vou Output High Voltage 2.4 Vv loy = 400 uA
lcc Power Supply Current 340 mA Ta = 25°C
I Input Leakage Current +10 HA 0V=V|y<Vcc
Lo Output Leakage Current +10 WA 0.45V < Vout < Vee
VoL Clock Input Low Voltage -05 +0.6 Vv
VcH Clock Input High Voltage 3.9 Vee+ 1.0 \
Capacitance of Input Buffer
Cin (All input except 15 pF fc = 1 MHz
ADg-AD7 RQ/GT)
Cio 8\"‘5’;%;’:;%7&%0 Buffer 15 pF fc = 1 MHz
A.C. CHARACTERISTICS (14 = 0°C to 70°C, V¢ = 5V =10%)
MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS
Symbol Parameter Min. Max. | Units Test Conditions
TCLCL CLK Cycle Period 200 500 ns
TCLCH CLK Low Time (¥ TCLCL)-15 ns
TCHCL CLK High Time (Vs TCLCL)+2 ns
TCH1CH2 | CLK Rise Time 10 ns From 1.0V to 3.5V
TCL2CL1 CLK Fall Time 10 ns From 3.5V to 1.0V
TDVCL Data In Setup Time 30 ns
TCLDX Data In Hold Time 10) ns
TR1VCL RDY Setup Time into 8284 (See Notes 1,2) 35 ns
TCLR1X RDY Hold Time into 8284 (See Notes 1, 2) 0 ns
TRYHCH READY Setup Time into 8088 (3 TCLCL)~-15 ns
TCHRYX READY Hold Time into 8088 30 ns
TRYLCL READY Inactive to CLK(See Note 3) -8 ns
THVCH HOLD Setup Time 35 ns
TINVCH INTR, NMI, TEST Setup Time (See Note 2) 30 ns
TILIH Input Rise Time (Except CLK) 20 ns From 0.8V to 2.0V
TIHIL Input Fall Time (Except CLK) 12 ns From 2.0V to 0.8V

52

AFN-008268

intel

iAPX 88/10 PRELIMINARY
A.C. CHARACTERISTICS (Continued)
TIMING RESPONSES ’

Symbol Parameter Min. Max. | Units| Test Conditions
TCLAV Address Valid Delay 10 110 ns
TCLAX Address Hold Time 10 ns
TCLAZ Address Float Delay TCLAX 80 ns
TLHLL ALE Width TCLCH-20 ns
TCLLH ALE Active Delay 80 ns
TCHLL ALE Inactive Delay 85 ns
TLLAX Address Hold Time to ALE Inactive TCHCL-10 ns
TCLDV Data Valid Delay 10 110 ns CL = 20-100 pF for
TCHDX Data Hold Time 10 ns | all8088 Outputs

— in addition to

TWHDX Data Hold Time After WR TCLCH-30 ns internal loads
TCVCTV Control Active Delay 1 10 110 ns
TCHCTV Control Active Delay 2 10 110 ns
TCVCTX Control Inactive Delay 10 110 ns
TAZRL Address Float to READ Active 0 ns
TCLRL RD Active Delay 10 165 ns
TCLRH RD Inactive Delay 10 150 ns
TRHAV RD Inactive to Next Address Active TCLCL-45 ns
TCLHAV HLDA Valid Delay 10 160 ns
TRLRH RD Width 2TCLCL-75 ns
TWLWH WR Width 2TCLCL-60 ns
TAVAL Address Valid to ALE Low TCLCH-60 ns
TOLOH Output Rise Time 20 ns From 0.8V to 2.0V
TOHOL Output Fall Time 12 ns From 2.0V to 0.8V

A.C. TESTING INPUT, OUTPUT WAVEFORM

A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

24

1.5 «——— TEST POINTS —>» 1.5

0.45

A.C_TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC “1" AND 0.45V FOR
ALOGIC "0." THE CLOCK IS DRIVEN AT 4.3V AND 0.25V. TIMING MEASURE-
MENTS ARE MADE AT 1.5V FOR BOTH A LOGIC "1" AND 0.

53

DEVICE
UNDER
TEST

Il C_ = 100 pF

C INCLUDES JIG CAPACITANCE

AFN-008268

intel IAPX 88/10 PRELIMINARY

BUS TIMING—MINIMUM MODE SYSTEM
T4 T2 T3 Tw Ta
TCLCL —»|TCH1CH2 TCL2CL1
Veu r/ .
CLK (8284 Output) vj { ’\ }‘ \ j[__
CL
—=| TCHCTV fo— TCHCL le— TCLCH —|
A1s-Ag Ajs5— Ag (Float during INTA)
e
- TCLDV
TCLAV-| — | roLax— DIl TCHDX —| -—
A19/Se-Aq6/S3 A19-Ass S7-S3
TCLLH—| TLHLL TLLAX
-
ALE /
— Y/,
TCHLL— 1 -~ TR1VCL
Vin o]
RDY (8284 Input) [+~ TAVAL— NN
SEENOTE5 vy = -
- —TCLRIX
RYLCL—>|© |=—
READY (8088 Input)
—=| |=—TCHRYX
TRYHCH—>| -—
|
— le-TCLAZ TDVCL ——{<+—TCLDX—»|
AD; - AD, D7-AD DATA IN
7 o)(AD7-ADo FLOAT
TAZRI TCLRH
RD //
READ CYCLE T /
(NOTE 1) — TCHCTV TCLRL } TRLRH TCHCTV
(WR, INTA = VoH) _
DT/R
TCVCTV— TCVCTX —| /
DEN

54 AFN-00826B

|nter iAPX 88/10 PRELIMINARY

WAVEFORMS (Continued)

BUS TIMING—MINIMUM MODE SYSTEM (Continued)

T T2 T3 Tw Ta
TCH1CH2 Teizeu
Veu
CLK (8284 Output) vjt 5; A‘ 3 * N j‘ \
cL
LTV VR B U e Vg b TCHDX—{ * -—
AD; - ADg AD7-ADo DATA OUT
! |
TCVCTV—{ <ADo K . réverx
WRITE CYCLE - ;
NOTE 1 DEN
TCVCTV— h
TWLWH /
¥R X /
TCVCTX—>| f—
— «-TCLAZ
~—TDVCL—>| <—TCLDX
AD; - AD, { -
TR Vil FLOAT] __ POINTER ~| FLOAT \
— —TCHCTV ! — TCHCTV
DTR
INTA CYCLE ToVeTY—]
NOTES 1,3
(RD, WR = V, —
(oH) NTA
TCVCTV—~| |- TeVCTX—
DEN
SOFTWARE HALT -
DEN,RD,WR,INTA = Vou AD7 - ADg INVALID ADDRESS SOFTWARE HALT
DT/R INDETERMINATE TCLAV — —

NOTES: 1. ALL SIGNALS SWITCH BETWEEN Vou AND Vo UNLESS OTHERWISE
SPECIFIED.

RDY IS SAMPLED NEAR THE END OF Ty, T3, Tw TO DETERMINE IF Ty
MACHINES STATES ARE TO BE INSERTED.

TWO INTA CYCLES RUN BACK-TO-BACK. THE 8088 LOCAL ADDR/DATA
BUS IS FLOATING DURING BOTH INTA CYCLES. CONTROL SIGNALS
ARE SHOWN FOR THE SECOND INTA CYCLE.

SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY.

ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE
NOTED

TS

an

55 AFN-00826B

'"ter iAPX 88/10 PRELIMINARY

A.C. CHARACTERISTICS (Continued)

'MAX MODE SYSTEM (USING 8288 BUS CONTROLLER)
TIMING REQUIREMENTS

Symbol Parameter Min. Max. | Units | Test Conditions

TCLCL CLK Cycle Period 200 500 ns

TCLCH CLK Low Time (35 TCLCL)—-15 ns

TCHCL CLK High Time (Ya TCLCL)+2 ns

TCH1CH2 | CLK Rise Time 10 ns From 1.0V to 3.5V
TCL2CL1 | CLK Fall Time 10 ns From 3.5V to 1.0V
TDVCL Data In Setup Time 30 ns

TCLDX Data In Hold Time : 10 ns

TR1VCL RDY Setup Time into 8284 (See Notes 1, 2) 35 ns

TCLR1X RDY Hold Time into 8284 (See Notes 1, 2) 0 ns

TRYHCH READY Setup Time into 8088 (24 TCLCL)-15 ns

TCHRYX READY Hold Time into 8088 30 ns

TRYLCL READY Inactive to CLK (See Note 4) -8 ns

TINVCH Setup Time for Recognition (INTR, NMI, TEST) 30 ns

(See Note 2)

TGVCH RQ/GT Setup Time 30 ns

TCHGX RQ Hold Time into 8086 40 ns

TILIH Input Rise Time (Except CLK) 20 ns From 0.8V to 2.0V
TIHIL Input Fall Time (Except CLK) 12 ns From 2.0V to 0.8V

56 AFN-008268

intel

iAPX 88/10 PRELIMINARY
A.C. CHARACTERISTICS (Conﬂnued)
TIMING RESPONSES
Symbol Parameter Min. Max. | Units. ‘1 Test.Conditions

TCLML Command Active Delay (See Note 1) 10 35 ns

TCLMH Command Inactive Delay (See Note 1) ... 10 35 ns

TRYHSH READY Active to Status Passive (See Note 3) 110 ns

TCHSV Status Active Delay 10 110 ns

TCLSH Status Inactive Delay 10 130 ns

TCLAV Address Valid Delay 10 110 ns

TCLAX Address Hold Time 10 ns

TCLAZ Address Float Delay TCLAX 80 ns

TSVLH Status Valid to ALE High (See Note 1). 15..| ns

TSVMCH | Status Valid to MCE High (See Note 1) 15 ns

TCLLH CLK Low to ALE Valid (See Note 1) 15| ns

TCLMCH | CLK Low to MCE High (See Note 1) 15 ns

TCHLL ALE Inactive Delay (See Note 1) 15 ns

TCLMCL MCE Inactive Delay (Sge Note 1) 15 ns CL = 20-100 pF for

TCLDV Data Valid Delay 10 110 ns all 8088 Outputs

TCHDX | Data Hold Time 10 ns | inaddition to

- internal loads

TCVNV Control Active Delay (See Note 1) 5 45 ns

TCVNX Control Inactive Delay (See Note 1) 10 45 ns

TAZRL Address Float to Read Active 0 ns

TCLRL RD Active Delay 10 165 ns

TCLRH RD Inactive Delay . 10 150 ns

TRHAV RD Inactive to Next Address Active TCLCL-45 ns

TCHDTL Direction Control Active Delay (See Note 1) 50 ns

TCHDTH Direction Control Inactive Delay (See Note 1) - 30 ns

TCLGL GT Active Delay | 110 ns

TCLGH GT Inactive Delay 85 ns

TRLRH | RD Width 2TCLCL-75 | ns

TOLOH Output Rise Time 20 ns From 0.8V to 2.0V

TOHOL Output Fall Time 12 ns From 2.0V to 0.8V
NOTES:

1. Signal at 8284 or 8288 shown for reference only.

2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.

3. Applies only to T2 state (8 ns into T3 state).
4. Applies only to T2 state (8 ns into T3 state).

57

AFN-008268B

IM IAPX 88/10 PRELIMINARY

WAVEFORMS (Continued)
BUS TIMING—MAXIMUM MODE . T2 » T Ts
SYSTEM (USING 8288) e tetcL——lrenicnz H oLzt
VCH -\
CLK [S jl S [-’ j
wd N N y / N F O\
TCLAV~] TeMeL —TCLCH |
asmas >E X X
- TCHSV —| JeTCLSH ° ’
) V) / (SEE NOTE 8) N
§2,5:,55 (EXCEPT HALT) K Y S AR
A1s-Ag . ' A1s—-Ag
— TCLAV TcLov TCHDX—>|
CLAX —*|
Ars/Se-Ar10/S3 Atz srSs .
;gt:: — LTCHLL :
ALE (8288 OUTPUT) /
SEENOTES _.‘ l~—TR1VCL
RDY (8284 INPUT) ' § §§>¢ \L
— TCLRIX
TRYLCL. et
READY (8088 INPUT) — %— TCHRYX
TRYHSH—| |«
READ CYCLE ToLAV—~ —{TcLAz —toveL Tcbeq
AD; — AD, 7=, r = DATA IN
Y /I\ AD7-£Do II FLOAT N\ /[FLOAT \
TAZRL: [~ TCLRH —H-TRHAV
w X A
T
TCHDTL —~| TCLRL TCHDTH
1\ TRLRH
OTR
TCLML -»| — oL
8288 OUTPUTS |t 1 o
SEE NOTES 5,6
TCVNV—+|
DEN
TCVNX— |—

58 AFN-00826B

| iAPX 88/10 PRELIMINARY

WAVEFORMS (Continued)

BUS TIMING—MAXIMUM n K Ts Ts

TCHSV 1>

MODE SYSTEM i T
(USING 8288) A A N A UYAR F 0\

2, $1, So (EXCEPT HALT) K }//// (s00 note 3) ______.

WRITE CYCLE TCLAV —~ - - —~|Tciovje— — le—TCLSH | TCHDX—»

—={ TCLAX
AD7 - ADg X

TCVNV—>| TCVNX—|
DEN)
— TCLML TCLMH—|
8288 OUTPUTS ‘
SEENOTES 56 | AMWC OR AIOWC

— TCLML — TCLMH

DATA

MWTC OR IOWC

INTA CYCLE

Ars—As FLOAT RESERVED FOR \
(SEE NOTES 3,4) CASCADE ADDR /’ FLOAT FLOAT __
- J‘TC LAZ \ FTDVCL—’ TCLDX
AD7-AD (¢ POINTER t——(
7450 4 FLOAT

/1 FLOAT
TSVMCH JoLmet~ "
B Y
p—
/
MCE/ e——— /.
-

)

TCLMCH —| — [CHDTL — TCHDTH

8288 OUTPUTS TCLML —|
SEENOTES 5,6 | INTA
TCLMH

—|\ j—TCVYNV

/
DEN P
SOFTWARE TCVNX—>|

HALT - (DEN = Vo ;RD,MRDC,JORC,MWTC,AMWC,IOWC,ATOWC,INTA,DT/R = Vou.

AD7 - ADg, A15—Ag

DTR

t

7

INVALID ADDRESS

TCLAV —+|

2|
o)
2

//
I

NOTES: 1. ALL SIGNALS SWITCH BETWEEN Voy AND Vo_ UNLESS OTHERWISE
SPECIFIED.
RDY IS SAMPLED NEAR THE END OF T2, T3, Tw TO DETERMINE IF Ty
MACHINES STATES ARE TO BE INSERTED.

. CASCADE ADDRESS IS VALID BETWEEN FIRST AND SECOND INTA
CYCLES.
TWO INTA CYCLES RUN BACK-TO-BACK. THE 8088 LOCAL ADDR/DATA
BUS IS FLOATING DURING BOTH INTA CYCLES. CONTROL FOR
POINTER ADDRESS IS SHOWN FOR SECOND INTA CYCLE.
SIGNALS AT 8284 OR 8288 ARE SHOWN FOR REFERENCE ONLY.
THE ISSUANCE OF THE 8288 COMMAND AND CONTROL SIGNALS
(MRDT, MWTC, AMWC, , TOWCT, ATOWT, INTA AND DEN) LAGS THE
ACTIVE HIGH 8288 CEN.
ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE
NOTED.
STATUS INACTIVE IN STATE JUST PRIOR TO T4.

I I

oo

® 0~

59 AFN-008268

intel

iAPX 88/10

PRELIMINARY

WAVEFORMS (Continued)

ASYNCHRONOUS
SIGNAL RECOGNITION

o w
NMI l — TINVCH (see note 1)
S }{

—) -

—

TEST

: 1. SETUP FOR
SIGNALS ONLY TO GUARANTEE RECOGNITION AT NEXT CLK

BUS LOCK SIGNAL TIMING
(MAXIMUM MODE ONLY)

Any CLK Cycu—-i

‘.vmvcn)
TCHGX 4}

PULSE 1
COPROCESSOR
Y d

Previous grant
Avo/Se - Ay b
-

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY)

+—— Any CLK Cycle —s}e—— > 0-CLK Cycle —|

PULSE 2
8088 GT

PULSE 3
'OPROCESSOR,
RELEASE

Ars—As
AD7— ADg 088

—_—

COPROCESSOR

NOTE: 1. THE COPROCESSOR MAY NOT DRIVE THE BUSSES OUTSIDE THE REGION
SHOWN WITHOUT RISKING CONTENTION.

5.5)
“'m Ly Al =

(SEE NOTE 1)

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY)

21 CLK CYCLE—|

(«—1 OR 2 CYCLES

f—_

41 |- TCLHAV '
\[\“——_,

cLK
_‘. THVCH (SEE NOTE 1)
(0
HOLD ;(
{5 ——4 -
—1 [+ TCLHAV
.

HLDA J[‘

N —] «—7cLaz

* L

8088 COPROCESSOR

o=

60

AFN-00826B

iAPX 88/10

PRELIMINARY

iAPX 86/10, 88/10
INSTRUCTION SET SUMMARY

DATA TRANSFER
MOV - Mevs: 78543210 76543210 76543210 76543210
Register/memory to/trom register [1000100 w | mod reg r/m
Immediate to register/memory 110001 1w [md000 /m data datadw 1 |
immediate to register 1011w reg data datad w 1
Memory to accumulator 1010000w addi-low addr-high
Accumulator to memory 1010001 w addr-iow add:-high
Register/memory 1o segment reqister [1 000 11 10 [mod0reg 1/m
Segment register 1o register/memory (10001100 [mod0reg r/m
PUSH - Push:
Register /memory 11111111 [mdt10 ovm |
Register 01010 reg
Segment register 000reg 110
POP - Pop:
Register/memory 10001111 (mod000 (/m
Register 01011 reg
Segment register 000reg 111
XCHE - Exchange:
Register/memory with register
Register with accumulator (0070 reg |
IN=laput from:
Fuxed port [Liiootow] — pot]
Vaniable port
0UT = Output to.
Fixed port 111001 1w port__]
Vanable port 111011 0w
XUAT-Translate byte 10 AL 11010111
LEA-Load EA to register 10001101 [mod reg r/m
103 -Load pornter to DS 11000101 [mod reg tim
LES=Load pornter 1o €S 11000100 [mod reg rim
LANF=Load AH with flags 10011111
SAWF -Store AH into flags 10011110
PUSHF-Push flags 10011100
POPF=Pop flags 10011101
ARITHMETIC
ADD - Add:
Reg /memory with register 10 ether (00000 0.d-w|mod reg rm
Immediate to register/memory 1000005 w|mod000 t/m data | datasw o
Immediate to accumulator 0000010w data cataitw 1|
ADC - Add with carry:
Reg /memory with register to either (0001000 w|mod reg r/m
Immediate to register/memory 1000005 w[mod0 10 tm | sara | cataifsw.01
Immediate to accumulator 0001010w data gata w1 |
INC - Increment:
Register/memory 1111111 w]mod000 rm
Register 01000 reg
AAA-ASCII adyust for add 00110111
DAA-Decimal adyust for add 00100111
8UB - Subtract
Reg /memory and register to exther [0 010 10d w [mod reg rm |
Immedrate from register/memory (100000 s w [mod1 01 m | G | datailswor]
Immediate from accumulator 0010110w data [saatwi |
88 = Subtract with berrow
Reg /memory and register to ether (0001 100 w [mod reg 1/m
Immediate from register/memory 100000 sw][mod0 11 r/m data_ | daadsw ol
Immediate from accumulator 0001110w data datadw 1 |

OEC Decrement: 76543210 76543210 76543210 76543210
Regrster/memory 111111 tw md001 /m |
Register 01001 reg
NEG Change sign 111101 1w mea0 1t m |
CMP Compare:
" Register/memory and register 001110dw][mod reg r/m
Immediate with register /memory 100000sw|mogt11 m data_ | dataitsw 01
immediate with accumutator 0011110w data dataiiw 1 |
AAS ASCIt adjust for subtract 00111111
DAS Decimal adjust for subtract 00101111
MUL Multiply (unsigned) 111101 1w med100 im
IMUL Integer multiply (signed) 111101 1twimodt01 rim
AAM ASCIl adjust for multiply 11010100[00001010
DV Divide (wnsignedi 1111011 wimodt 10 v/m
10IV integer divide signedi 111101 T wimodt 1t t'm
AAD ASCII adjust for divide 11010101 (00001010
CBW Convert byte to word 10011000
CWO Convert word to double word (10011001
LoGIC
NOT invert 1111011 wimod010 r'm
SHL/SAL Shift iogical anthmenciett [110100 v w [mod100 'm
SHR Sttt togical 1ight 110100 w]mod1 01 im
SAR Shitt anthmetic right 110100vwimodl 11 1/m
ROL Rotate left 110100vw[md000 1'm
ROR Rotate nght 110100V w[mod001 tm
RCL Rotate through carry flag left (110100 v w|mod0 10 /m
RCR Rotate through carry night 110100V w|[mod0t1 tm
AND And:
Reg /memory and register to exthec [0 0 10000 w [mod reg r/m
Immediate 10 register /memory 1000000w[mod100 1/m data [sataitw
Immeduate to accumulator 0010010w dala cata w1
TEST And function to flags. no result:
Register /memory and register 1000010w [mod reg t/m
Immediate data and register/memory (1111011 w [mod000 1/m data__ | daadwi |
Immedvate data and accumulator 1010100w data datatw 1]
OR Or:
Reg /memory and register to either [0 000 10d w [mod reg r/m
Immediate 1o register /memory 1000000w [mod0 0t r/m data_ | dataiw.1.]
immediate 1o accumulator 0000110w data . datatw 1
XOR Exclusive or:
Reg /memory and register to exther (001 1000 w [mod reg /m
Immediate to register /memory 1000000w [mpdi10 um data_ | daaiwi |
Immediate 10 accumulator 0011010w data data it w 1
STRING MANIPULATION :
REP=Repeat 11110012
MOVS=Move byte/word 1010010w
CMPS=Compare by te/word 101001 1w
SCAS=Scan byte/word 10101 11w
LODS=Load byte/wd to AL/AX 1010110w
8T08=Stor byte/wd from AL/A 1010101 w

Mnemonics ©intel, 1978

61

AFN-00826B

intel

iAPX 88/10

PRELIMINARY

INSTRUCTION SET SUMMARY (Continued)

CONTROL TRANSFER-
CALL = Call: 76543210 76543210 76543210 76543210 76543210
Direct within segment 11101000 disp-low disphigh_| INB/IAE urop gn not below/above (g 11 1001 ¥ disp
Indirect within segment 11111111 mod010 ¢/m ‘“E’“eé:ma%"ocg' below or 01110111 disp
Direct intersegment 10011010 offset-low OHSEI-M JNP/JPO: Jump on not par/par odd m 111011 disp
seg-low seghigh | JNO: Jump on not overtiow f[o1110001 disp
Indirect intersegment a1 modot1 m JINS Jump on not sign 01111001 disp
JMP - Unconditional Jump: LOOP Loop CX imes 11100010 disp
LOOPZ/LOOPE Loop while zero/equal |1 1100001 disp
Direct within segment 11101001 disp-low disp-high] LOOPN2/LOBPNE Lalon while not 11100000 disp
Direct within segment-short 11101011 disp sz Ju:;o;:%j:zem 11100011)
Indirect within segment 11111111 mod 100 o/m
Direct intersegment 11101010 offset-low offset-high | INT Interrupt
seg-low seg-high | Type specified 11001101 wee]
Indirect intersegment 11111111 mod 101 r/m Type 3 11001100
INTO Interrupt on overtiow 11001110
RET - Metorn fram CALL: IRET Interrupt return 11001111
Within segment 11000011
Within seg. adding immed to SP 11000010 data-low | data-nigh |
Intersegment 11001011
Intersegment. adding immediate to SP[11001010 data-low data-high | PROCESSOR CONTROL
L/ ARGE- S o e reaer (s =2 L Clearcarry 11111009
Jlﬁ/JIIg.rlu!f::.(:n less or equal/not AR EERL L CHC Complement carry LIl1010]
greater 01111110 disp STC Set carry 11111001
"/“'“;',hgsam below/not above 91110010 disp CLO Clear direction 11111100
JBE/INACIump on below or equal/ [0 1110110 disp $TO Set direction 11111101
JP/JPE=Jump on parity/parity even 01111010 disp CLI Clear interrupt 11111010
J0=Jump on overflow 01110000 disp STI Set interrupt 11111011
J8=Jump on sign 01111000 disp WLT Hait 11110100
JNE/INZ=Jump on not equal/not zero (0 1110101 disp WAIT wait 100110711
INL/JGE dump on not less/greater 4711110 4 disp ESC Escape (to external device) 11011 %xxx[modx x xo/m
"“’";f‘.“a':g,"" not less or equal/ 4"y 7y g 1 14 disp LOCK Bus lock prefix 11110000

Fostnotes:

AL = 8-bit accumulator

AX = 16-bit accumulator

CX = Count register

DS = Data segment

ES = Extra segment

Above/below refers to unsigned value.

Greater = more positive;

Less = less positive (more negative) signed values
ifd = 1 then “'t0" reg; if d = 0 then “from" reg

if w = 1 then word instruction; if w = 0 then byte instruction

it mod = 11 then r/m is treated as a REG field

it mod = 00 then DISP = 0*, disp-low and disp-high are absent
if mod = 01 then DISP = disp-low sign-extended to 16-bits, disp-high is absent
it mod = 10 then DISP = disp-high: disp-low

if r/m = 000 then EA = (BX) + (SI) + DISP

if r/m = 001 then EA = (BX) + (DI) + DISP

it r/m = 010 then EA = (BP) + (SI) + DISP

it r/m = 011 then EA = (BP) + (DI) + DISP

it r/m = 100 then EA = (SI) + DISP

if r/m = 101 then EA = (DI) + DISP

if r/m = 110 then EA = (BP) + DISP*

it r/m = 111 then EA = (BX) + DISP

DISP follows 2nd byte of instruction (before data if required)

*except if mod = 00 and r/m = 110 then EA = disp-high: disp-low.

Mnemonics © Intel, 1978

if's:w =01 then 16 bits of immediate data form the operand

if s:w =11 then an immediate data byte is sign extended to
form the 16-bit operand

it v=0then “‘count’ = 1; if v=1 then ‘‘count" in (CL)

x = don't care

2 is used for string primitives for comparison with ZF FLAG

SEGMENT OVERRIDE PREFIX

001reg110

REG is assigned according to the following table

168itiw - 1) 8Bitiw-0) Segment
000 AX 000 AL 00 ES
001 CX 001 CL 01 CS
010 DX 010 OL 10 S
011 BX 011 BL 11 0S
100. SP 100 AH

101 8P 101 CH

10 I 110 DH

11-DI 111 BH

Instructions which reference the flag register file as a 16-bit object use the symbol FLAGS to

represent the file:

FLAGS = X:X:X:X:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF)

62

AFN-008268

Intel PRELIMINARY

8284A
CLOCK GENERATOR AND DRIVER FOR
iAPX 86, 88 PROCESSORS

® Generates the System clock for the = 18-Pin Package
IA‘.PX" 86, 88 Processors = Single +5V Power Supply

= Uses a Crystal or a TTL Signal for = Generates System Reset Output from
Frequency Source _Schmitt Trigger Input

m Provides Local READY and Multibus™ = Capable of Clock Synchronization with
READY Synchronization Other 8284As

RES b———— D
Q> RESET

[+
_Jick
X1 ‘
XTAL
. OSCILLATOR [] ~ \
X2 ‘ osc
_ esyner]t ~ 18 vee
FIC
PCLK[] 2 17 X1
+3 +2 |—» PCLK
o B AENI[]3 16 [x2
EFI SYNC SYNC ROVIC}a 15 [DASYRE
CSYNC l] READY[]5 14[JEFI
RDY2[] 6 13[FIC
RDY1
|D D LK AEN2[]7 12[]osc
AENT cLk[]s 11[_1RES
GND[]9 10 [_JRESET
RDY2 ; 1
CKt CK¢
AEN2 : D Q : D Q |- READY
FF1 FF2
ASYNC
Figure 2.
Figure 1. 8284A Block Diagram 8284A Pin Configuration

63

8284A

PRELIMINARY

Table 1. Pin Description

quency appearing on this pin. The input
signal is a square wave 3 times the frequency

Symbol | Type| - Name and Function Symbol | Type Name and Function
AENT, | | Address Enable: AEN is an active LOW CLK O. | Processor Clock: CLK is the clock output
AEN2 signal. AEN serves to qualify its respective ' | used by the processor and all devices which
Bus Ready Signal (RDY1 or RDY2). AEN1 directly connect to the processor’s local bus
validates RDY1 while AEN2 validates RDY2. (i.e., the bipolar support chips and other MOS
Two AEN signal inputs are useful in system devices). CLK has an output frequency which
configurations which permit the processor to is s of the crystal or EFl input frequency and a
access two Multi-Master System Busses. In Y3 duty cycle. An output HIGH of 4.5 volts
non Multi-Master configurations the AEN (Vce= 5V) is provided on this pin to drive MOS
signal inputs are tied true (LOW). devices.
RDY1, | | Bus Ready: (Transfer Complete). RDY is an PCLK O | Peripheral Clock: PCLK is a TTL level pe-
RDY2 active HIGH signal which is an indication from ripheral clock signal whose output frequency
a device located on the system data bus that is ¥2 that of CLK and has a 50% duty cycle.
data has been received, or is available. RDY1 -
N " P N io 0SsC O | Oscillator Output: OSC is the TTL level out-
lbs q:;;leed by AENT while RDY2 is qualified put of the internal oscillator circuitry. Its fre-
Y ’) quency is equal to that of the crystal.
ASYNC | | ::"u':y“s’z:':: ':::iz:::';::l:;:c:rs;:‘:fa'::: RES | | ResetIn: RES is an active LOW signal which
mode of the READY logic. When ASYNGC is is used to generate RESET. The 8284A
low, two stages of READY sy.nchronization are provides a Schmitt trigger input so that an RC
1 N connection can be used to establish the
provided. When ASYNC is left open or HIGH a r-up reset of proper duration
single stage of READY synchronization is power-up prop .
provided. RESET | O | Reset: RESET is an active HIGH signal which
K X X is used to reset the 8086 family processors. Its
READY | O Re_ady.: READY is an active H.IGH s_lgnal timing characteristics are Letermined by
which is the synchronized RDY signal input. RES
READY is cleared after the guaranteed hold .
time to the processor has been met. CSYNC | | Clock Synchronization: CSYNC is an active
A - : HIGH signal which allows multiple 8284As to
X1, X2 ! c‘::r?t:lisl;"a'tt);lhaen dd ¥::Le t:t:"";:‘: tt?e::lci:; be synchronized to provide clocks that are in
tirr:lesthe desired 'rocessrzr clockqfre'ueync phase. When CSYNC is HIGH the internal
— P — 9 Y counters are reset. When CSYNC goes LOW
F/C | | Freq y/Crystal Select: F/Cis astrapping the internal counters are allowed to resume
option. When strapped LOW, F/C permits the counting. CSYNC needs to be externally syn-
processor’s clock to be generated by the crys- chronized to EFI. When using the internal os-
tal. When F/C is strapped HIGH, €LK is gener- cillator CSYNC should be hardwired to
ated from the EFI input. ground.
EFI | | External Frequency: When F/C is strapped GND Ground.
HIGH, CLK is generated from the input fre- Voo Power: +5V supply.

of the desired CLK output.

FUNCTIONAL DESCRIPTION
General

The 8284A is a single chip clock generator/driver for the
iAPX 86, 88 processors. The chip contains a crystal-
controlled oscillator, a divide-by-three counter, com-
plete MULTIBUS™ “Ready” synchronization and reset
logic. Refer to Figure 1 for Block Diagram and Figure 2
for Pin Configuration.

Oscillator

The oscillator circuit of the 8284A is designed primarily
for use with an external series resonant, fundamental
mode, crystal from which the basic operating frequency
is derived.

The crystal frequency should be selected at three times
the required CPU clock. X1 and X2 are the two crystal
input crystal connections. For the most stable operation
of the oscillator (OSC) output circuit, two series resistors
(Ry = Rz = 510 Q) as shown in the waveform figures are
recommended. The output of the oscillator is buffered and
brought out on OSC so that other system timing signals
can be derived from this stable, crystal-controlled source.

For systems which have a Vg ramp time = 1V/ms and/or
have inherent board capacitance between X1 or X2, ex-
ceeding 10pF (not including 8284A pin capacitance), the
configuration in Figures 4 and 6 is recommended. This
circuit provides optimum stability for the oscillatorin such
extreme conditions. It is advisable to limit stray ca-
pacitances to less than 10pF on X1 and X2 to minimize
deviation from operating at the fundamental frequency.

AFN-01472B

intel

8284A

PRELIMINARY

Clock Generator

The clock generator consists of a synchronous divide-
by-three counter with a special clear input that inhibits
the counting. This clear input (CSYNC) allows the out-
put clock to be synchronized with an external event
(such as another 8284A clock). It is necessary to syn-
chronize the CSYNC input to the EFI clock external to
the 8284A. This is accomplished with two Schottky flip-
flops. The counter output is a 33% duty cycle clock at
one-third the input frequency.

The FIC input is a strapping pin that selects either the
crystal oscillator or the EFl input as the clock for the +3
counter. If the EFl input is selected as the clock source,
the oscillator section can be used independently for
another clock source. Output is taken from OSC.

Clock Outputs

The CLK output is a 33% .duty cycle MOS clock driver
designed to drive the iAPX 86, 88 processors directly.
PCLK is a TTL level peripheral clock signal whose out-
put frequency is ¥2 that of CLK. PCLK has a 50% duty
cycle.

Reset Logic

The reset logic provides a Schmitt trigger input (RES)
and a synchronizing flip-flop to generate the reset
timing. The reset signal is synchronized to the falling
edge of CLK. A simple RC network can be used to
provide power-on reset by utilizing this function of the
8284A.

READY Synchronization

Two READY inputs (RDY1, RDY2) are provided to accom-
modate two Multi-Master system busses. Each input
has a qualifier (AEN1 and AENZ, respectively). The AEN
signals validate their respective RDY signals. If a Multi-

Master system is not being used the AEN pin should be
tied LOW.

Synchronization is required for all asynchronous active-
going edges of either RDY input to guarantee that the
RDY setup and hold times are met. Inactive-going edges
of RDY in normally ready systems do not require syn-
chronization but must satisfy RDY setup and hold as a
matter of proper system design.

The ASYNC input defines two modes of READY syn-
chronization operation.

When ASYNC is LOW, two stages of synchronization
are provided for active READY input signals. Positive-
going asynchronous READY inputs will first be syn-
chronized to flip-flop one at the rising edge of CLK
and then synchronized to flip-flop two at the next falling
edge of CLK, after which time the READY output will go
active (HIGH). Negative-going asynchronous READY in-
puts will be synchronized directly to flip-flop two at the
falling edge of CLK, after which time the READY output
will goinactive."This mode of operation is intended for use
by asynchronous (normally not ready) devices in the sys-
tem which cannot be guaranteed by design to meet the
required RDY setup timing, TryvcL, On each bus cycle.

When ASYNC is high or left open, the first READY flip-
‘flop is bypassed in the READY synchronization logic.
READY inputs are synchronized by flip-flop two on the
falling edge of CLK before they are presented to the
processor. This mode is available for synchronous
devices that can be guaranteed to meet the required
RDY setup time.

ASYNC can be changed on every bus cycle to select the
appropriate mode of synchronization for each device in
the system.

EFI
cLocK b R 8284A
SYNCHRONIZE
a}——{ csync
EFI >-—-—Dc >T —>T

(TO OTHER 8284As)

Figure 3. CSYNC Synchronization

AFN-01472B

intel

8284A

PRELIMINARY

ABSOLUTE MAXIMUM RATINGS*

TemperatureUnderBias................. 0°Cto 70°C
Storage Temperature T —-65°Cto +150°C
All Output and Supply Voltages -05Vto +7V
AllInput Voltages —1.0Vto +5.5V
Power Dissipationc000vviiin.. 1 Watt

*NOTICE: Stresses above those listed under “Absolute
Maximum Ratings’ may cause permanent damage to the
device. This is a stress rating only and functional opera-
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi-
cation is not implied. Exposure to absolute- maximum
rating conditions for extended periods may affect device
reliability.)

D.C. CHARACTERISTICS (To=0°C to 70°C, Vo =5V + 10%)

Symbol Parameter Min. Max. Units | Test Conditions
I Forward Input Current (ASYNC) -1.3 mA VgE=0.45V
Other Inputs -0.5 mA Vg=0.45V
Ir Reverse Input Current (ASYNC) 50 uA Vr=Vcc
Other Inputs 50 uA VRr=5.25V
Ve Input Forward Clamp Voltage -1.0 v Ilc=-5mA
lce Power Supply Current 162 mA
Vi Input LOW Voltage 0.8 v
ViH Input HIGH Voltage 2.0 \"
ViHR Reset Input HIGH Voltage 26 \
VoL Output LOW Voltage 0.45 \ 5mA
VoH Output HIGH Voltage CLK 4 \" -1mA
Other Outputs 24 \") -1mA
Ving=ViLg RES Input Hysteresis 0.25 Y '
A.C. CHARACTERISTICS (To=0°C to 70°C, Vg =5V = 10%)
TIMING REQUIREMENTS
Symbol Parameter Min. Max. Units Test Conditions
teHEL External Frequency HIGH Time 13 ns 90%-90% Vin
teELEH External Frequency LOW Time 13 ns 10%-10% V|n
teLEL EFI Period teneL+ teLen+ 0 ns (Note 1)
XTAL Frequency 12 30 MHz
triveL RDY1, RDY2 Active Setup to CLK 35 ns ASYNC = HIGH
ta1veH RDY1, RDY2 Active Setup to CLK 35 ns ASYNC = LOW
triveL RDY1, RDY2 Inactive Setup to CLK 35 ns
teLrIx RDY1, RDY2 Hold to CLK 0 ns
tayveL ASYNC Setup to CLK 50 ns
toLavx ASYNC Hold to CLK 0 ns
tA1VRIV AENT, AEN2 Setup to RDY1, RDY2 15 ns
toLa1x AENT, AEN2 Hold to CLK . 0 ns
tyHEH CSYNC Setup to EFI 20 ns
tenyL CSYNC Hold to EFI 20 ns
tyHyL CSYNC Width 2-tg gL ns
tiHoL RES Setup to CLK 65 ns (Note 2)
touiH RES Hold to CLK 20 ns (Note 2)
tiLH Input Rise Time 20 ns From 0.8V to 2.0V
tiLiL Input Falt Time 12 ns From 2.0V to 0.8V

66

AFN-014728B

-
intal 8284A PRELIMINARY
A.C. CHARACTERISTICS (Continued)
TIMING RESPONSES
Symbol Parameter Min. Max. Units Test Conditions
teleL CLK Cycle Period 100 ns
tcHeL CLK HIGH Time (V3 terc)+2 for CLK Freq. < 8 MHz ns Fig. 7 & Fig. 8
(Y5 teLel) +6 for CLK Freq.=10 MHz
tcien " CLK LOW Time (34 tcrc)—15 for CLK Freq.<8 MHz ns Fig. 7 & Fig. 8
(35 tco)—14 for CLK Freq.=10 MHz
:ilfi‘f CLK Rise or Fall Time 10 ns 1.0V to 3.5V
teupL PCLK HIGH Time tcrcL—20 ns
teLpH PCLK LOW.Time toLcL—20 ns
tryLcL Ready Inactive to CLK(See Note 4) -8 ns Fig. 9 & Fig. 10
tRYHCH Ready Active to CLK (See Note 3) (35 teLc)—15 for CLK Freq.<8 MHz ns Fig. 9 & Fig. 10
(%5 toLcL)—14 for CLK Freq.=10 MHz
tou CLK to Reset Delay 40 ns
teren CLK to PCLK HIGH DELAY 22 ns
teipL CLK to PCLK LOW Delay 22 ns
torcH OSC to CLK HIGH Delay -5 22 ns
toLcL OSC to CLK LOW Delay 2 35 ns
toLon Output Rise Time (except CLK) 20 ns From 0.8V to 2.0V
tonoL Output Fall Time (except CLK) 12 ns From 2.0V to 0.8V
NOTES:

1. d=EFI rise (5ns max)+ EFI fall (5ns max).
2. Setup and hold necessary only to guarantee recognition at next clock.
3. Applies only to T3 and TW states.
4. Applies only to T2 states.

A.C. TESTING INPUT, OUTPUT WAVEFORM

A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

24

0.45

1.5 <—— TEST POINTS — 1.5

DEVICE

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC 1" AND 0.45V FOR
A LOGIC “0." TIMING MEASUREMENTS ARE MADE AT 1.5V FOR BOTH A

LOGIC “1" AND "0."

Ci = 100pF FOR CLK

CL= 30pF FOR READY

e

v, = 2.08V

R, = 3250

Co

67

AFN-01472B

IM B 8284A

PRELIMINARY

WAVEFORMS

CLOCKS AND RESET SIGNALS

— f—teLeL

lcco

teHEL

tEHYL —> o
—>

CSYNC | - !

[€—tynEH

tyHyL—

- —

l«—tcicn—»| |e—tcucr
' ’ !4—¢CLCL >
tCLPH— |=— —» |la—TcipL
ja———tPLpH tPHPL

<—'cum—->|<—hmc1.—->‘

1T

toL—|

RESET O ’
oen

NOTE: ALL TIMING MEASUREMENTS ARE MADE AT 1.5 VOLTS, UNLESS OTHERWISE NOTED.

T

READY SIGNALS (FOR ASYNCHRONOUS DEVICES)

tCLRIX e

tRIVCH—]

X

/X

RDY1,2 L

=
AEN1,2 . ‘*

= favveL e

— tRiveL le—
—» {CLRIX [w—
[e—taiRtv
—» tcLax

)

—» tcLAYX

READY]['
—>| tRYHCH [-—

K

Tj?“‘

tRyLCL—| |e—

68

AFN-01472B

intel

8284A

PRELIMINARY

WAVEFORMS (Continued)

READY SIGNALS (FOR SYNCHRONOUS DEVICES)

CLK /_!L

[

RDY1,2

ASYNC

READY

[€— tRYHCH—

3] — X [%
[€—tcLRIX—> [— tRiveL—|
—>{ tR1vCL [e—
.o
] K
tatriv—>| - —{ {CLRIX [*—
) A
—_— .]
—;l tavver - —» tCLAIX [
{ .o
—» tcLAYX [
.o
_] K

tRyLcL —| (e

24

i
MHz [

X1

X2

FIC

CSYNC:

CLK

LOAD
(SEE NOTE 1)

Ry = Rp = 5100

Clock High and Low Time (Using X1, X2)

PULSE
GENERATOR

EFI

| FIC

CLK

r— CSYNC

LOAD
(SEE NOTE 1)

Clock High and Low Time (Using EFI)

69

AFN-01472B

PRELIMINARY

-
mtef 8284A
Vce
LOAD
AEN1 CLK (SEE NOTE 1)
X1
-
LOAD
24MHz [READY
SEE NOTE 2
; T x2 ()
PULSE
! GENERATOR RDY2 0OSC
SR Ry TRIGGER FIC
A AEN2
CSYNC
= = = Ry = R = 5100.
Ready to Clock (Using X1, X2)
PULSE LOAD
GENERATOR EFl ClK (SEE NOTE 1)
Vce
; FIC
TRIGGER AENT
PULSE RDY2
GENERATOR AENZ
CSYNC READY (seé%ggs 2
HOTES: Ready to Clock (Using EFI)
1. CL = 100 pF
2. C_ =30 pF
70 AFN-01472B

intel

© 8282/8283
OCTAL LATCH

m Address Latch for iAPX 86, 88, s 3-State Outputs
MCS-80%, MCS-85%®, MCS-48® Families

m High Output Drive Capability for

Driving System Data Bus = 20-Pin Package with 0.3” Center
s Fully Parallel 8-Bit Data Register and

Buffer s No Output Low Noise when Entering
s Transparent during Active Strobe or Leaving High Impedance State

The 8282 and 8283 are 8-bit bipolar latches with 3-state output buffers. They can be used to implement latches, buffers
or multiplexers. The 8283 inverts the input data at its outputs while the 8282 does not. Thus, all of the principal periph
eral and input/output functions of a microcomputer system can be implemented with these devices.

r—"—sﬂz—-—': 1 DIodTV;;:]Vcc
2 - 1 7 2 A D[] 2 19 [] 0Og
m m : @ Diz [} 3 18 [] 0Oy
1 DI3[]a 17 [] D02
| Dia[]s 16 [] D03
L ; ois[]s 8282 15 [] 004
r< | r—————=-- ‘L_ < L = Dig[]7 14tj005
o= e B B mile B
N ——————- N 7 r——————- ZEmN BE DO:
}———4 _}:_ @ »-——-4 J':— @ G::JE :o :f gsT;
7 b——————— Z <] pm————— <]
On=|) H—{=)
_______ L -
[N | "_% [N r§N“ | [~—————==— ,_,, ~N
onE I CosSE 1B
[—————— -4b w f——————- ~I_ Dig [} 1 201 vee
e ’——L _[': o] HI- J[: N o[]2 19 [100o
r|fs | +H——————-—) r| kFb——————-— ZamY DO:
Opre= e e H—{=) ot M Sl
] b N — [i Q— o3a 17100
Ogg== H—ed b H-{®) N D Sak
[in [I bis[]e 15 [7] DOgq
os[]7 147005
A oy []s 13 [00¢
3 007
— Rm @l AT i i
) & 5] wete b
Figure 1. Logic Diagrams Figure 2. Pin Configurations

71

ntel

8282/8283

Table 1. Pin Description

Pin

Description

STB

STROBE (Input). STB is an input control
pulse used to strobe data at the data input
pins (Ag-A;) into the data latches. This
signal is active HIGH to admit input data.
The data is latched at the HIGH to LOW
transition of STB.

OUTPUT ENABLE (Input). OE is an input
control signal which when active LOW
enables the contents of the data latches
onto the data output pin (By-B;). OE being
inactive HIGH forces the output buffers to
their high impedance state.

Dlo-DI;

DATA INPUT PINS (Input). Data presented
at these pins satisfying setup time re-
quirements when STB is strobed and
latched into the data input latches.

DO,-DO;

_(8282)

DOy~ 567
(8283)

DATA OUTPUT PINS (Output). When OE is
true, the data in the data latches is pre-
sented as inverted (8283) or non-inverted
(8282) data onto the data output pins.

FUNCTIONAL DESCRIPTION

The 8282 and 8283 octal latches are 8-bit latches with
3-state output buffers. Data having satisfied the setup
time requirements is latched into the data latches by
strobing the STB line HIGH to LOW. Holding the STB
line in its active HIGH state makes the latches appear
transparent. Data is presented to the data output pins by
activating the OE input line. When OE is inactive HIGH
the output buffers are in their high impedance state.
Enabling or disabling the output buffers will not cause
negative-going transients to appear on the data output
bus.

7 2 AFN-00727C

ntel

8282/8283

ABSOLUTE MAXIMUM RATINGS*

Temperature UnderBias................. 0°Cto70°C
Storage Temperature............. —-65°C to +150°C
All Output and Supply Voltages........ —-05Vto +7v
All Input Voltages.................. -1.0Vto +55V
Power Dissipation.......................... 1 Watt

*NOTICE: Stresses above those listed under ‘Absolute
Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional opera-
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi-
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (vcc = 5V £10%, Ta = 0°C to 70°C)
Symbol Parameter Min. Max. Units Test Conditions

Ve Input Clamp Voltage -1 Vv lc == =5 mA

lcc Power Supply Current 160 mA

le Forward Input Current -0.2 mA Vg = 0.45V

Ir Reverse Input Current 50 uA Vg = 5.25V

VoL Output Low Voltage 45 \Y loL = 32 mA

Vou Output High Voltage 24 \ loy = =5 mA

lorF Output Off Current +50 uA Vorr = 0.45 t0 5.25V

Vi Input Low Voltage 0.8 v Vcc=5.0V See Note 1

Vin Input High Voltage 20 \ Vcc=5.0V See Note 1
F=1MHz

Cin Input Capacitance 12 pF Veias=2.5V, Vec =5V
Ta=25°C

NOTE:
1. Output Loading lg_=32mA, Igy = ~5mA, C| = 300pF.

A.C. CHARACTERISTICS

(Vec = 5V =10%, Tp = 0°C to 70°C

Loading: Outputs —lgL = 32 mA, Ioy = —5 mA, C_ = 300 pF)

Symbol Parameter Min. Max. Units Test Conditions
TIVOV Input to Output Delay (See Note 1)
—Inverting 5 22 ns
—Non-Inverting 5 30 ns
TSHOV STB to Output Delay
—Inverting 10 40 ns
—Non-Inverting 10 45 ns
TEHOZ Output Disable Time 5 18 ns
TELOV Output Enable Time 10 30 ns
TIVSL Input to STB Setup Time 0 ns
TSLIX Input to STB Hold Time 25 ns
TSHSL STB High Time 15 ns
TILIH, TOLOH Input, Output Rise Time 20 ns From 0.8V to 2.0V
TIHIL, TOHOL Input, Output Fall Time 12 ns From 2.0V to 0.8V
NOTE:
1. See waveforms and test load circuit on following page.
73 AFN-00727C

intel

8282/8283

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

24

1.5 <«—— TEST POINTS —» 1.5

0.45

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC “1" AND 0.45V FOR
A LOGIC "0.” TIMING MEASUREMENTS ARE MADE AT 1.5V FOR BOTH A
LOGIC "1" AND "0."

OUTPUT TEST LOAD CIRCUITS

ourt

1.5V

33

ISOOpF

3-STATE TO VoL

1.5V

180Q

out

IMpF

3.STATE TO VoH

2.14v

52.7Q

out

300 pF

N

SWITCHING

74

AFN-00727C

intal 8282/82683

WAVEFORMS

S

"

TIVSL. TSLIX:

TSHSL

l=-Tivov—~| TEHOZ TELOV
Vor-.1V

OUTPUTS

VoL+1v
SEE NOTE 1 ot

TSHOV

NOTE: 1.8283 ONLY — OUTPUT MAY BE MOMENTARILY INVALID FOLLOWING THE HIGH GOING STB TRANSITION.
2. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED.

50 sor
8283
40

3 8
z z *F “ons"
> >
3 3
S 8

20 2 “p\cl\-

10 |~ . 10

| 1 1 | J 1 1 1 1 J
200 400 600 800 1000 200 400 600 800 1000
pF LOAD pF LOAD

Output Delay vs. Capacitance
75

AFN-00727C

intel
8286/8287
OCTAL BUS TRANSCEIVER

u Data Bus Buffer Driver for iAPX 86,88, m 3-State Outputs
MCS-80™, MCS-85™, and MCS-48™™ :
Families
m 20-Pin Package with 0.3” Center
m High Output Drive Capability for
Driving System Data Bus
= No Output Low Noise when Entering
a Fully Parallel 8-Bit Transceivers or Leaving High Impedance State

The 8286 and 8287 are 8-bit bipolar transceivers with 3-state outputs. The 8287 inverts the input data at its outputs
while the 8286 does not. Thus, a wide variety of applications for buffering in microcomputer systems can be met.

r-————"77- a
=~ !
Ag 1
—
——————— HE Aot T 20[0vec At 20[vce
_______ I~ A2 19[] Bo A1[]2 191 8o
”: A3 18784 Ay 186
_______ 'lq AzC]a 7[O82 afa e
_______ 171 o~ As]s 16[]B3 As[]s 16 [1B3
_,l: asC]s 8286 B S as] s 8287 she
_______ +~ As(]7 14{]Bs Ag]7 14{]85
_______ .t —_ A7[]e 13[] 86 Az[]8 13[]86
U (e) 6E[]o 12|87 oe[]9 12[]87
_______ I e[0T N[0 1 a7
_______ Np
3 T v QD
Figure 1. Logic Diagrams Figure 2. Pin Configurations

76

8286/8287

Table 1. Pin Description

Symbol Type Name and Function

T | Transmit: T is an input control signal used to control the direction of the transceivers. When HIGH,
it configures the transceiver's Bo—By as outputs with Ag—-A7 as inputs. T LOW configures Ag—-Ay as
the outputs with Bg~B7 serving as the inputs.

OE | Output Enable: OE is an input control signal used to enable the appropriate output driver (as
selected by T) onto its respective bus. This signal is active LOW.

Ag-Ay /0 Local Bus Data Pins: These pins serve to either present data to or accept data from the processor’s
local bus depending upon the state of the T pin.

Bo-B;(8286) /0 System Bus Data Pins: These pins serve to either present data to or accept data from the system

Bo-B7(8287) bus depending upon the state of the T pin.

FUNCTIONAL DESCRIPTION

The 8286 and 8287 transceivers are 8-bit transceivers with Bo—B; pins is driven onto the Ap—A; pins. No output low
high impedance outputs. With T active HIGH and OE ac- glitching will occur whenever the transceivers are enter-
tive LOW, data at the Ag—Ay pins is driven onto the Bo-B7 ing or leaving the high impedance state.

pins. With T inactive LOW and OE active LOW, data at the

77 AFN-015068

|M 8286/8287
TEST LOAD CIRCUITS !
1.5V 1.5V 2.1av
33Q 66Q
ouT ouT

ISDO pF

3-.STATE TO VoL

IWOpF

52.7Q
out

300 pF

SWITCHING

3STATE TO VoL
B OUTPUT A OUTPUT B OUTPUT
15V 1.5V 2.28V
I 1809 Img I1149
out out out »—I
:I:SODFF Iwopr I‘loOpF
aSTATE TO Vou 3STATE TO VoH SWIT_-C-HING
B OUTPUT A OUTPUT A OUTPUT
78 AFN-015068

intel

8286/8287

ABSOLUTE MAXIMUM RATINGS*

‘TemperatureUnderBias................. 0°Cto70°C
Storage Temperature............. —~65°C to +150°C
All Output and Supply Voltages. -05Vto +7V
All Input Voltages. -1.0Vto +5.5vV
Power Dissipation.......................... 1 Watt

*NOTICE: Stresses above those listed under: “Absolute
Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional opera-
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi-
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (Vcc = +5V +10%, Ta= 0°C to 70°C)

Symbol Parameter Min Max Units Test Conditions
Ve Input Clamp Voltage -1 v lc=-5mA
lcc Power‘SuppIy Current—8287 130 mA
‘ —8286 160 mA
g Forward Input Current -0.2 mA Ve =0.45V
Ir Reverse Input Current 50 uA Vg=5.25V
Voo Output Low Voltage —B Outputs .45 v loL =32 mA
—A Outputs .45 \' loL = 16 mA
VoH Output High Voltage —B Outputs 2.4 Vv lon=-5mA
‘ —A Outputs 24 v lon=-1mA
lorr Output Off Current Ig Vorr=0.45V
lorr Output Off Current Ir Vorr=5.25V
ViL Input Low Voltage —A Side 0.8 v Vec=5.0V, See Note 1
—B Side 0.9 \" Vce=5.0V, See Note 1
ViH Input High Voltage 2.0 \" Vce=5.0V, See Note 1
F=1MHz
Cin Input Capacitance 12 pF Vgias= 2.5V, Voo =5V
Ta=25°C
NOTE:

1. B Outputs—IgL = 32 mA, loy = —5 mA, C_ = 300 pF; A Outputs—Ig. = 16 mA, loy = —1 mA, C| = 100 pF.

A.C. CHARACTERISTICS (v¢c

Loading: B Outputs—Ilg, = 32 mA, Igy
A Outputs—Ilg. = 16 mA, Igy

1]

+5V £10%, Ty = 0°C to 70°C)

-5 mA, C_ = 300 pF
-1 mA, C_ = 100 pF

Symbol Parameter Min Max Units Test Conditions
TIVOV input to Output Delay
Inverting 5 22 ns) (See Note 1)
Non-Inverting 5 30 ns
TEHTV Transmit/Receive Hold Time ns
TTVEL Transmit/Receive Setup 10 ns
TEHOZ Output Disable Time 5 18 ns
TELOV Output Enable Time 10 30 ns
TILIH, Input, Output Rise Time 20 ns From 0.8V to 2.0V
TOLOH
TIHIL, input, Output Fall Time 12 ns From 2.0V to 8.0V
TOHOL
NOTE:
1. See waveforms and test load circuit on following page.
79

AFN-01506B

|ntel 8286/8287

WAVEFORMS

X

|

l=Tivov —~| TEHOZ TELOV —|
VoH - .1V
OUTPUTS —_————
VoL + .1V
|¢———— TEHTV ——| f—TTVEL

-

NOTE:
1. All timing measurements are made at 1.5V unless otherwise noted.

50 50 —
8287
a0
© o
W poSE w
7] | ¢ C «
z WoRS z
> >
< 3
w w
a a
2 TyPICAL 20
10 10—
1 1 1 1 | | 1l 1 | 1
200 400 600 800 1000 200 400 600 800 1000
pF LOAD pF LOAD

Output Delay versus Capacitance

80 AFN-015068

intgl

Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

Intel International
Rue du Moulin a Papier 51, Boite 1,
B-1160 Brussels, Belgium

Intel Japan K.K.
Flower Hill-Shinmachi East Bldg.
1-23-9, Shinmachi, Setagayu-ku
Tokyo 154, Japan

Printed in U.S.A./C-257/781/75K/RRD

	02058903 intel 1981.tif
	02058904.tif
	02058905.tif
	02058906.tif
	02058907.tif
	02058908.tif
	02058909.tif
	02058910.tif
	02058911.tif
	02058912.tif
	02058913.tif
	02058914.tif
	02058915.tif
	02058916.tif
	02058917.tif
	02058918.tif
	02058919.tif
	02058920.tif
	02058921.tif
	02058922.tif
	02058923.tif
	02058924.tif
	02058925.tif
	02058926.tif
	02058927.tif
	02058928.tif
	02058929.tif
	02058930.tif
	02058931.tif
	02058932.tif
	02058933.tif
	02058934.tif
	02058935.tif
	02058936.tif
	02058937.tif
	02058938.tif
	02058939.tif
	02058940.tif
	02058941.tif
	02058942.tif
	02058943.tif
	02058944.tif
	02058945.tif
	02058946.tif
	02058947.tif
	02058948.tif
	02058949.tif
	02058950.tif
	02058951.tif
	02058952.tif
	02058953.tif
	02058954.tif
	02058955.tif
	02058956.tif
	02058957.tif
	02058958.tif
	02058959.tif
	02058960.tif
	02058961.tif
	02058962.tif
	02058963.tif
	02058964.tif
	02058965.tif
	02058966.tif
	02058967.tif
	02058968.tif
	02058969.tif
	02058970.tif
	02058971.tif
	02058972.tif
	02058973.tif
	02058974.tif
	02058975.tif
	02058976.tif
	02058977.tif
	02058978.tif
	02058979.tif
	02058980.tif
	02058981.tif
	02058982.tif
	02058983.tif
	02058984.tif
	02058985.tif
	02058986.tif
	02058987.tif
	02058988.tif
	02058989.tif
	02058990.tif
	02058991.tif
	02058992.tif
	02058993.tif
	02058994.tif
	02058995.tif
	02058996.tif
	02058997.tif
	02058998.tif
	02058999.tif
	02059000.tif
	02059001.tif
	02059002.tif
	02059003.tif
	02059004.tif
	02059005.tif
	02059006.tif
	02059007.tif
	02059008.tif
	02059009.tif
	02059010.tif
	02059011.tif
	02059012.tif
	02059013.tif
	02059014.tif
	02059015.tif
	02059016.tif
	02059017.tif
	02059018.tif
	02059019.tif
	02059020.tif
	02059021.tif
	02059022.tif
	02059023.tif
	02059024.tif
	02059025.tif
	02059026.tif
	02059027.tif
	02059028.tif
	02059029.tif
	02059030.tif
	02059031.tif
	02059032.tif
	02059033.tif
	02059034.tif
	02059035.tif
	02059036.tif
	02059037.tif
	02059038.tif
	02059039.tif
	02059040.tif
	02059041.tif
	02059042.tif
	02059043.tif
	02059044.tif
	02059045.tif
	02059046.tif
	02059047.tif
	02059048.tif
	02059049.tif
	02059050.tif
	02059051.tif
	02059052.tif
	02059053.tif
	02059054.tif
	02059055.tif
	02059056.tif
	02059057.tif
	02059058.tif
	02059059.tif
	02059060.tif
	02059061.tif
	02059062.tif
	02059063.tif
	02059064.tif
	02059065.tif
	02059066.tif
	02059067.tif
	02059068.tif
	02059069.tif
	02059070.tif
	02059071.tif
	02059072.tif
	02059073.tif
	02059074.tif
	02059075.tif
	02059076.tif
	02059077.tif
	02059078.tif
	02059079.tif
	02059080.tif
	02059081.tif
	02059082.tif
	02059083.tif
	02059084.tif
	02059085.tif
	02059086.tif
	02059087.tif
	02059088.tif
	02059089.tif
	02059090.tif
	02059091.tif
	02059092.tif
	02059093.tif
	02059094.tif
	02059095.tif
	02059096.tif
	02059097.tif
	02059098.tif
	02059099.tif
	02059100.tif
	02059101.tif
	02059102.tif
	02059103.tif
	02059104.tif
	02059105.tif
	02059106.tif
	02059107.tif
	02059108.tif
	02059109.tif
	02059110.tif
	02059111.tif
	02059112.tif
	02059113.tif
	02059114.tif
	02059115.tif
	02059116.tif
	02059117.tif
	02059118.tif
	02059119.tif
	02059120.tif
	02059121.tif
	02059122.tif
	02059123.tif
	02059124.tif
	02059125.tif
	02059126.tif
	02059127.tif
	02059128.tif
	02059129.tif
	02059130.tif
	02059131.tif
	02059132.tif
	02059133.tif
	02059134.tif
	02059135.tif
	02059136.tif
	02059137.tif
	02059138.tif
	02059139.tif
	02059140.tif
	02059141.tif
	02059142.tif
	02059143.tif
	02059144.tif
	02059145.tif
	02059146.tif
	02059147.tif
	02059148.tif
	02059149.tif
	02059150.tif
	02059151.tif
	02059152.tif
	02059153.tif
	02059154.tif
	02059155.tif
	02059156.tif
	02059157.tif
	02059158.tif
	02059159.tif
	02059160.tif
	02059161.tif
	02059162.tif
	02059163.tif
	02059164.tif
	02059165.tif
	02059166.tif
	02059167.tif
	02059168.tif
	02059169.tif
	02059170.tif
	02059171.tif
	02059172.tif
	02059173.tif
	02059174.tif
	02059175.tif
	02059176.tif
	02059177.tif
	02059178.tif
	02059179.tif
	02059180.tif
	02059181.tif
	02059182.tif
	02059183.tif
	02059184.tif
	02059185.tif
	02059186.tif
	02059187.tif
	02059188.tif
	02059189.tif
	02059190.tif
	02059191.tif
	02059192.tif
	02059193.tif
	02059194.tif
	02059195.tif
	02059196.tif
	02059197.tif
	02059198.tif
	02059199.tif
	02059200.tif
	02059201.tif
	02059202.tif
	02059203.tif
	02059204.tif
	02059205.tif
	02059206.tif
	02059207.tif
	02059208.tif
	02059209.tif
	02059210.tif
	02059211.tif
	02059212.tif
	02059213.tif
	02059214.tif
	02059215.tif
	02059216.tif
	02059217.tif
	02059218.tif
	02059219.tif
	02059220.tif
	02059221.tif
	02059222.tif
	02059223.tif
	02059224.tif
	02059225.tif
	02059226.tif
	02059227.tif
	02059228.tif
	02059229.tif
	02059230.tif
	02059231.tif
	02059232.tif
	02059233.tif
	02059234.tif
	02059235.tif
	02059236.tif
	02059237.tif
	02059238.tif
	02059239.tif
	02059240.tif
	02059241.tif
	02059242.tif
	02059243.tif
	02059244.tif
	02059245.tif
	02059246.tif
	02059247.tif
	02059248.tif
	02059249.tif
	02059250.tif
	02059251.tif
	02059252.tif

